compilation without ENABLE_SP_FMDS defined gave me a lot of link errors. It appeared that symbol used by ADA was still in use in the HUD.
There is also a typo from Curt in instrument_mgr.cxx where he #include "kr_87.cxx" instead of "kr_87.hxx"
All necessary elements for an ADF gauge had been migrated from
Cockpit/kr_87.cxx to Instrumentation/adf.cxx. Migrating the sound
related elements was apparently planned, but not done yet. This
intermediate state broke the ident morse sound: it couldn't get
turned off and it always indicated "SF", regardless of the tuned-in
frequency. The following patches continue the migration:
adf-radio.diff => Base/Aircraft/Instruments/adf-radio.xml:
---------------------------------------------------------------
* sets maximum volume to 1 (rather than 2); Not only is 1
loud enough (and 2 unpleasantly noisy), it also prevents
the knob from being turned to non-existant positions. :-)
* fixes wrong use of /instrumentation/adf/ident
* the voice/ident selector(?) remains unchanged, but as it's
not switched to "IDENT", there'll be no ident sound by default
this is consistent with other sounds and DME.
radiostack.diff => src/Cockpit/radiostack.[ch]xx:
---------------------------------------------------------------
* comment out use of FGKR_87 class. kr_87.[ch]xx is now no
longer used. kr-87adf.xml would no longer work, either, but
isn't used anywhere, anyway. Future adf radios have to use
the adf instrument, using xml/Nasal for specific hardware
implementation details.
adf.diff => src/Instrumentation/adf.[ch]xx:
---------------------------------------------------------------
* adds ident morse sound capability using two new input
properties:
- /instrumentation/adf/volume-norm (double)
- /instrumentation/adf/ident-audible (bool)
will delay it's reply by 50ms. The ground station can change it's reply delay
to trick the airborn dme unit into reporting a distance that is offset from
the true distance by some constant value. In FG we model this by subtracting
a fixed distance from the actual distance.
It is thus possible in our implimentation for the displayed distance to become
negative. This patch clamp DME distance to a minimum value of 0.00 so it can
never go negative.
A good elevation is critical for proper glide slope modeling. This patch
assigns the average field elevation to any ILS component that doesn't have
a valid elevation.
Also, for an ILS approach, use the GS transmitter elevation for glide slope
calculations rather than the localizer elevation, in some cases this can
make a big difference.
- FG now directly supports Robin's native nav database file format.
- His latest data now separates out dme, gs, loc, and marker beacon
transmitters rather than lumping them all into a single "ILS" record.
- These new data structure changes prompted me to do some code restructuring
so that internally these different types of navaids are all kept as
separate lists and searched and handled separately.
- This structural change had a cascading affect on any code that
references or uses the nav databases. I've gone and "touched" a lot of
nav related code in a lot of places.
- As an added bonus, the new data (and code) adds DME bias so these will
all now read as they do in real life.
- Added Navaids/navdb.cxx and Navaids/navdb.hxx which provide a front
end loaders for the nav data.
- Added Navaids/navrecord.hxx which is a new "generic" nav data record.
- Removed Navaids/ils.hxx, Navaids/ilslist.cxx, Navaids/ilslist.hxx,
Navaids/mkrbeacons.cxx, and Navaids/mkrbeacons.hxx which are all now
depricated.
Add FGPredictor class to xmlauto. Add support for horizontal navigation based
on flight track as opposed to heading. Add crosstrack-error support to nav.
Simplify error adjust calculation for horizontal nav (better interception).
Fixed potential divide by zero that was producing nan issues in the xmlauto
code.
immediate end to glut, only that I'm going through and cleaning up (and
taking inventory of the actual glut dependencies in case I want to investigate
SDL.)
clarity:
nav_radial => nav_target_radial (same as selected, except for a LOC)
nav_heading => nav_reciprocal_radial
nav_magvar => nav_twist (it's not always the same as magvar)
nav_heading_needle_deflection => nav_cdi_deflection
nav_gs_needle_deflection => nav_gs_deflection
Added nav_radial back in, but now it shows the current radial from the
VOR, as one would expect. This value also appears in the
/radios/nav[*]/radials/actual-deg property.
This patch exposes the nav_id--Navaid (VOR/ILS) IDs--in the property tree for use in EFIS displays. Both the string and individual integer (char) values are published.
Erik Hofman:
I have converted all sprintf() functions in navcom.cxx into snprintf() for some extra securety.
scene management code and organizing it within simgear. My strategy is
to identify the code I want to move, and break it's direct flightgear
dependencies. Then it will be free to move over into the simgear package.
- Moved some property specific code into simgear/props/
- Split out the condition code from fgfs/src/Main/fg_props and put it
in it's own source file in simgear/props/
- Created a scene subdirectory for scenery, model, and material property
related code.
- Moved location.[ch]xx into simgear/scene/model/
- The location and condition code had dependencies on flightgear's global
state (all the globals-> stuff, the flightgear property tree, etc.) SimGear
code can't depend on it so that data has to be passed as parameters to the
functions/methods/constructors.
- This need to pass data as function parameters had a dramatic cascading
effect throughout the FlightGear code.
I believe.) :-)
- The height of the navaid was not being properly converted to meters
before being used in our internal calculations. This caused the GS
to be placed too high.
- I was using the wrong trig function to calculate the current approach
angle of the aircraft. The distance to the GS source is the euclidean
point to point distance and represents the hypotenuse (not the ground
distance) so I need to use asin() rather than atan() to calculate the
angle.
- I was calculating distance directly to the GS source, rather than
taking into consideration that the GS transmitter projects a plane,
so I need to take the distance to the line where that plane intersectso
the ground. Previously, the way I modeled my distance calculation, the
GS transmitter effectively formed a 3 degree cone from the source. The GS
transmitter is usually placed a 100 meters or so off the runway edge so
the cone model could never bring you in to the touch down point precisely.
With these changes, the GS will bring you in precisely to the touchdown
point as defined in the default.ils.gz file (it wouldn't before.) The only
issue that remains is that it will bring you in to the elevation defined
in the ILS database, which doesn't necessarily match the DEM/SRTM terrain
at that point. Still on average, this will be a big improvement until we
can do a better job of getting the runway end elevations nailed correctly.
New panels are loaded now
New 3D model gets loaded
Reinitialize more subsystems
Add reinit() to FGFX, sound gets reinitialized
Still a lot needs to be done though.
This is just a port of an old 3D HUD patch to the new view code.
This pans the HUD with the view, by pasting it onto a quad fixed in front of the viewer. It also fixes the awful, arbitrary scaling problems the HUD code has. The old HUD only looks right when viewed at 1024x768 and 55 degree FOV. This works the scale out magically so that it looks right in all views. It also redefines the "<compression-factor>" tag in the ladder to (1) mean compression instead of expansion and (2) have non-psychopathic units (now "1" means 1 degree per degree). Fix this in your existing HUD ladder files before reporting bugs. It's definitely a cosmetic win -- the velocity vector points at the right thing and the horizon lines up properly.
Norman wrote:
I have created a modified version of Andy's patch that implements the 3D HUD as the 'normal' and the 2D HUD as the 'minimal' HUD. < i > and < shift I > keys
The "switch" layer type now takes any number of child layers, and will
use the first child that has a condition that evaluates to 'true' (no
condition is automatically true). Previously, it could take only two
children, controlled by a boolean property.
I've updated the instrument modulator code to allow tricks like the one
described by Andy. It is now possible to define <min>, <max> and
<modulator> in one layer and if <min> and/or <max> ore within the range
of the <modulator> tag, their value will be honoured.
So, if you define
<layer>
<min>0</min>
<max>50</max>
<modulator>100</modulator>
</layer>
The value will stay at 50, until the modulator forces it back to 0.
better scheme.
While it's true that the actual ILS indications are unreliable when
far off the approach path, the ILS is not out of range -- you can
still ident it (an essential part of any approach procedure), and the
indicator will usually be doing something, however bizarre. The
current scheme did not allow the user to ident the ILS until
practically on the approach path.
if the station is too far away. Instead, simply return the closest station.
All the code that searches navaids does it's own range checking anyway.
This will make the navlist query functions a bit more useful for other
types of functionality where you may need to lookup a station without
consideration of range (i.e. presetting your position relative to a navaid.)
hemisphere the distance is positive, if you are in the departure hemisphere
the distance is negature. (Possible use for graphing approach distance
vs. glide slope or cdi.)
Some more cmall changes to the SimGear header files and removed the
SG_HAVE_NATIVE_SGI_COMPILERS dependancies from FlightGear.
I've added a seperate JSBSim patch for the JSBSim source tree.
Ensure that if a condition for a panel mouse binding fails, other
bindings for the same area will have a chance to run.
Add a repeatable flag for panel mouse bindings (defaults to true).
I wrote:
> I can confirm this. Layers on the 2D panels (but oddly, only the 2D
> panels) aren't drawing over the background with the current ATI
> drivers.
OK, this turns out to be a trivial fix, although I still think it's a
driver bug. There are two calls to glPolygonOffset in the panel
rendering code (shared by both 2D and 3D panels). One is called
per-layer, and sets up a layer-specific offset. The other is called
for drawing the background textures, to lift them off of any
underlying cockpit geometry.
I was using different "factor" values for each, incorrectly. Patch
attached. It was affecting only 2D panels because the 3D ones don't
use background images.
Problem is, by my reading of the specification the bug should have had
the effect of pushing the background texture *farther* behind the
instruments, instead of pulling it on top of them. Either I'm reading
the spec incorrectly or ATI has inverted the sense of the factor
argument. Dunno, I'll submit a bug report to them and see what
happens.
> Jim Wilson wrote:
> > How hard would it be to have a property that toggles hotspot
> > visibility? It'd be nice to be able to turn it on and have yellow
> > rectangles show up on the hotspots...
>
> That's not a bad idea.
It's actually an astoundingly good idea, and implementable over lunch
to boot. :)
Try the attached patch, which predicates the boxes on the
/sim/panel-hotspots property. I mapped a toggle event on this to a
spare joystick button, and had fun. :)
[dpm: bound to Ctrl-C]
avoid having the 2D instruments obscure 3D objects in front of them):
It's related to depth buffer precision. On my Geforce cards (2MX and
3), it never happens with the 24 bit depth buffer you get by default
at 32bpp. At 16bpp, it picks a slimmer depth buffer (probably 16 bit)
and the texture layers bleed through.
The code is using a pretty big argument to glPolygonOffset, and I've
never investigated how small it can be. If someone has a little time
the next time they see this issue, try changing the value of
POFF_UNITS at the top of Cockpit/panel.cxx. Decrease it until the
textures *just* start to interfere with each other, and post the value
that works for you.
The biggest and coolest patch adds mouse sensitivity to the 3D
cockpits, so we can finally work the radios. This ended up requiring
significant modifications outside of the 3D cockpit code. Stuff folks
will want to look at:
+ The list of all "3D" cockpits is stored statically in the
panelnode.cxx file. This is clumsy, and won't migrate well to a
multiple-aircraft feature. Really, there should be a per-model list
of 3D panels, but I couldn't find a clean place to put this. The
only handle you get back after parsing a model is a generic ssg
node, to which I obviously can't add panel-specific methods.
+ The aircraft model is parsed *very* early in the initialization
order. Earlier, in fact, than the static list of allowable command
bindings is built in fgInitCommands(). This is bad, as it means
that mouse bindings on the instruments can't work yet. I moved the
call to fgInitCommands, but someone should look carefully to see
that I picked the right place. There's a lot of initialization
code, and I got a little lost in there... :)
+ I added yet another "update" hook to the fgRenderFrame routine to
hook the updates for the 3D panels. This is only required for
"mouse press delay", and it's a fairly clumsy mechanism based on
frame rate instead of real time. There appears to be delay handling
already in place in the Input stuff, and there's a discussion going
on about different mouse behavior right now. Maybe this is a good
time to unify these two (now three) approaches?
really see anything different in the day, but as day turns to night the
panel smoothly darkens and the lighting component becomes visible.
Lights are wired to electrical system so if you kill power, you lose the
lights.
- Removed some old cruft.
- Removed some support for older versions of automake which technically was
correct, but caused the newer automakes to squawk warnings during an
initial sanity check (which isn't done very intelligently.)
NOTE: this fix is technically not correct for older version of automake.
These older version use the variable "INCLUDES" internally and could have
them already set to an important value. That is why we were appending
our values to them. However, newer versions of automake don't set this
value themselves so it is an error to append to a non-existant variable.
We seem to "get away" with overwriting the value on older versions of
automake, but if you have problems, consider upgrading to at least
automake-1.5.
- tidies up the update-time-step handling (making it a simple "dt");
- makes the altimeter get a proper pressure, and the (unused) vacuum
calculation get a proper RPM (*);
- replaces property name look-ups with static pointers to property nodes.
Notes from DPM:
- the static pointers are a very bad idea, but they're only temporary;
I plan to make FGSteam into a proper subsystem soon, and then they
can be member variables
- I fixed the patch to get the current static pressure from the
/environment/pressure-inhg property, so that the altimeter interacts
properly with FGEnvironment
+ The panel(s) are now an first-class SSG node inside the aircraft
scene graph. There's a little code added to model.cxx to handle the
parsing, but most of the changes are inside the new FGPanelNode
class (Model/panelnode.[ch]xx).
+ The old FGPanel source changed a lot, but mostly cosmetically. The
virtual-cockpit code moved out into FGPanelNode, and the core
rendering has been abstracted into a draw() method that doesn't try
to set any OpenGL state. I also replaced the old inter-layer offset
code with glPolygonOffset, as calculating the right Z values is hard
across the funky modelview matrix I need to use. The older virtual
panel code got away with it by disabling depth test, thus the "panel
draws on top of yoke" bug. PolygonOffset is really the appropriate
solution for this sort of task anyway.
+ The /sim/virtual-cockpit property is no more. The 2D panels are
still specified in the -set.xml file, but 3D panels are part of the
model file.
+ You can have as many 3D panels as you like.
Problems:
+ The mouse support isn't ready yet, so the 3D panels still aren't
interactive. Soon to come.
+ Being part of the same scene graph as the model, the 3D panels now
"jitter" in exactly the same way. While this makes the jitter of
the attitude gyro less noticeable, it's still *very* noticeable and
annoying. I looked hard for this, and am at this point convinced
that the problem is with the two orientation computations. We have
one in FGLocation that is used by the model code, and one in
FGViewer that is used at the top of the scene graph. My suspicion
is that they don't agree exactly, so the final orientation matrix is
the right answer plus the difference. I did rule out the FDMs
though. None of them show more than about 0.0001 degree of
orientation change between frames for a stopped aircraft. That's
within an order of magnitude of what you'd expect for the
orientation change due to the rotation of the earth (which we don't
model -- I cite it only as evidence of how small this is); far, far
less than one pixel on the screen.
[and later]
OK, this is fixed by the attached panel.cxx file. What's happened is
that the winding order for the text layer's polygons is wrong, so I
reverse it before drawing. That's largely a hatchet job to make
things work for now, though. We should figure out why the winding
order is wrong for only text layers and fix it. I checked the plib
sources -- they're definitely doing things CCW, as is all the rest of
the panel code.
Odd. I'm also not sure why the 2D panel doesn't care (it works in
both winding orders). But this will allow you to check in working
code, anyway. There's a big comment to this effect in there.
- changed FGSubsystem::update(int) to
FGSubsystem::update(delta_time_sec); the argument is now delta time
in seconds rather than milliseconds
- added FGSubsystem::suspend(), FGSubsystem::suspend(bool),
FGSubsystem::resume(), and FGSubsystem::is_suspended(), all with
default implementations; is_suspended takes account of the master
freeze as well as the subsystem's individual suspended state
- the FDMs now use the delta time argument the same as the rest of
FlightGear; formerly, main.cxx made a special case and passed a
multiloop argument
- FDMs now calculate multiloop internally instead of relying on
main.cxx
There are probably some problems -- I've done basic testing with the
major FDMs and subsystems, but we'll probably need a few weeks to
sniff out bugs.
The FlightGear patch is to take account the change in the getChildren
function that now returns a vector<SGPropertyNode_ptr>. If the
removeChild functionnality is to be added in FlightGear, all those
SGPropertyNode * floating around should be changed to
SGPropertyNode_ptr.
This led to an investigation into why the ident playing didn't work anymore.
Recent changes in the sound manager broke some assumptions the radiostack
code was making. These patches should hopefully fix all that back up.
Erik, please review these changes to double check I didn't do more damage
than good. :-)
Here are the Boost-less FGEventMgr updates I promised.
Removed Boost dependencies from FGEventMgr.
Removed Boost configure check.
fgMethodCallback now handles const member functions.
I've successfully tested these changes with gcc and msvc.
This patch moves built-in Class (for now only mag-ribbon) into special
directory as you have written it in TODO: in comments of this class in
panel_io.cxx. IMHO it is good idea. I want to play with built-in
classes and OpenGC and this will be useful.
radiostack.cxx, fg_init.cxx and main.cxx. If these changes are accepted
then you can remove Time/event.[ch]xx and Include/fg_callback.hxx from
the repository.
radiostack.cxx:703 says
bool light_on = ( outer_blink || middle_blink || inner_blink );
but none of the flags has ever been initialized when this line is first
executed.
as a follow-up of my previous message, I found that in panel.cxx, function
const char *FGTextLayer::Chunk::getValue () const, there is the use of a
member variable _buf that seems to be uninitialized.
(mainly in src/Input/input.cxx) will make src/GUI/mouse.cxx obsolete
and bring the mouse into the same input system as the joystick and
keyboard. This is just preliminary work allowing, covering mouse
clicks (no motion yet), and it actually crashes on a middle or right
click.
The new mouse support is disabled by default until it become stable;
to try it out, you need to configure --with-new-mouse.
Description:
This update includes the new viewer interface as proposed by David M. and
a first pass at cleaning up the viewer/view manager code by Jim W.
Note that I have dropped Main/viewer_lookat.?xx and Main/viewer_rph.?xx and
modified the Makefile.am accordingly.
Detail of work:
Overall:
The code reads a little easier. There are still some unnecessary bits in
there and I'd like to supplement the comments in the viewer.hxx with a tiny
bit on each interface group and what the groupings mean (similar but briefer
than what you emailed me the other day). I tried not to mess up the style,
but there is an occasional inconsistency. In general I wouldn't call it done
(especially since there's no tower yet! :)), but I'd like to get this out
there so others can comment, and test.
In Viewer:
The interface as you suggested has been implemented. Basically everything
seems to work as it did visually. There is no difference that I can see in
performance, although some things might be a tiny bit faster.
I've merged the lookat and rph (pilot view) code into the recalc for the
viewer. There is still some redundancy between the two, but a lot has been
removed. In some cases I've taken some code that we'd likely want to inline
anyway and left it in there in duplicate. You'll see that the code for both
looks a little cleaner. I need to take a closer look at the rotations in
particular. I've cleaned up a little there, but I suspect more can be done
to streamline this.
The external declaration to the Quat_mat in mouse.cxx has been removed. IMHO
the quat doesn't serve any intrinsic purpose in mouse.cxx, but I'm not about
to rip it out. It would seem that there more conventional ways to get
spherical data that are just as fast. In any case all the viewer was pulling
from the quat matrix was the pitch value so I modified mouse.cxx to output to
our pitchOffset input and that works fine.
I've changed the native values to degrees from radians where appropriate.
This required a conversion from degrees to radians in a couple modules that
access the interface. Perhaps we should add interface calls that do the
conversion, e.g. a getHeadingOffset_rad() to go along with the
getHeadingOffset_deg().
On the view_offset (now headingOffset) thing there are two entry points
because of the ability to instantly switch views or to scroll to a new view
angle (by hitting the numeric keys for example). This leaves an anomaly in
the interface which should be resolved by adding "goal" settings to the
interface, e.g. a setGoalHeadingOffset_deg(), setGoalPitchOffset_deg(), etc.
Other than these two issues, the next step here will be to look at some
further optimizations, and to write support code for a tower view. That
should be fairly simple at this point. I was considering creating a
"simulated tower view" or "pedestrian view" that defaulted to a position off
to the right of whereever the plane is at the moment you switch to the tower
view. This could be a fall back when we don't have an actual tower location
at hand (as would be the case with rural airports).
ViewManager:
Basically all I did here was neaten things up by ripping out excess crap and
made it compatible as is with the new interface.
The result is that viewmanager is now ready to be developed. The two
preexisting views are still hardcoded into the view manager. The next step
would be to design configuration xml (eg /sim/view[x]/config/blahblah) that
could be used to set up as many views as we want. If we want to take the easy
way out, we might want to insist that view[0] be a pilot-view and have
viewmanager check for that.
interface instead of string. This will result in a lot more
efficiency later, once I add in a simple hash table for caching
lookups, since it will avoid creating a lot of temporary string
objects. The major considerations for users will be that they cannot
use
node->getName() == "foo";
any more, and will have to use c_str() when setting a string value
from a C++ string.
separate header file. This change will help integrate properties into
JSBSim.
Also, I (David Megginson) removed most of the SimGear include
statements from globals.hxx, reducing the amount of recompilation
every time SimGear changes. This required making minor changes to a
lot of files that were depending on the side-effects of the inclusions
in globals.hxx.
- implement the standard FGSubsystem interface, for consistency
- eliminate current_autopilot and add get/set_autopilot to FGGlobals,
for consistency
- use private methods rather than static functions for tying
properties
There should be no change in functionality.
Oh yeah, I forgot to send that one along. This one is my bug, I
goofed the precedence in the fgPanelVisible() function in panel.cxx
such that the panel was *always* visible if virtual cockpit was
enabled. Here's a replacement. I've modified the style from a single
boolean expression to an if-list, since that's more readable to my
eyes for expressions this big:
Actually, I think I'm off the hook here; the problem is pre-existing.
What's happening is that the x/y offsets enter the modelview matrix at
line 346 in the current panel.cxx. But note that the same
transformation also occurs before each instrument rendered at line
403. What's happening is that the instruments are double-translated
relative to the background.
Unless I'm not understanding something, the one inside the instrument
render loop looks unnecessary. Removing it fixes the issue and
doesn't cause any bugs that I can find. It also fixes a bug where you
could scroll the instruments on top of the 3D panel, where the offsets
are supposed to be ignored. :)
Attached is a new panel.cxx which fixes that bug, and substantially
simplifies the virtual panel code (the matrix inversion that I thought
was needed wasn't, but there were some offsetting scale bugs that hid
the problem).
What the attached patch does is map your panel definition onto a (non
z-buffered) quad in front of your face. You can twist the view around
and see it move in the appropriate ways.
Apply the patch (let me know if folks need help with that step), and
then set the /sim/virtual-cockpit property to true. You can do this
on the command line with --prop:/sim/virtual-cockpit=1, or via the
property picker. Bind it to a key for fast toggling if you like.
The default bindings don't allow for "panning" the view, so you'll
have to modify yours. These are the mappings to my joystick's hat
switch, for those who need hints:
<axis n="6">
<desc>View Direction</desc>
<low>
<repeatable>true</repeatable>
<binding>
<command>property-adjust</command>
<property>/sim/view/goal-offset-deg</property>
<step type="double">1.0</step>
</binding>
</low>
<high>
<repeatable>true</repeatable>
<binding>
<command>property-adjust</command>
<property>/sim/view/goal-offset-deg</property>
<step type="double">-1.0</step>
</binding>
</high>
</axis>
<axis n="7">
<desc>View Elevation</desc>
<low>
<repeatable>true</repeatable>
<binding>
<command>property-adjust</command>
<property>/sim/view/goal-tilt-deg</property>
<step type="double">1.0</step>
</binding>
</low>
<high>
<repeatable>true</repeatable>
<binding>
<command>property-adjust</command>
<property>/sim/view/goal-tilt-deg</property>
<step type="double">-1.0</step>
</binding>
</high>
</axis>
While the current implementation is happy with just plastering the
panel's notion of "screen" into the 3D world, this is actually more
general. Each panel can, in principle, have it's own coordinate
system, and you could build a cockpit out of a bunch of them. The
mapping is specified by providing a 3D coordinate for three corners of
the quad the panel should be mapped to; this should be pretty simple
to work with.
All that's needed for a perfectly general solution is a convention on
where to store the information (a cockpit xml file, or put it in the
aircraft -set file, or...), and some work on the panel's coordinate
system conventions (some of which don't coexist very nicely with a
generalized 3D environment). Combine that with a plib model for the
non-panel interior of the cockpit, and we're golden.
I'm actually really pleased with this. It worked better and more
quickly than I could have imagined, and impact on the surrounding code
is quite light -- a few property tests only. But some stuff is still
missing:
+ No equivalent work was done to the HUD, so it still displays
incorrect headings when the view changes. The use of pixel
coordinates deep in the HUD code is going to give me fits doing the
port, I sure. It's not nearly so well put together as the panel
(where I just changed the setup code -- none of the rendering code
changed at all).
+ I forgot that the panel was clickable. :) Input events still have
the screen coordinates, which essentially kills the interactivity
when in virtual cockpit mode. This won't be hard to fix; it's only
broken because I forgot the feature existed.
And one note about the implementation choice: to get away from the
inevitable near clip plane issue, the virtual cockpit renderer simply
disables the z buffer. This means that cockpits built using these
panels need to be z-sorted, which isn't too hard since they are static
geometry. It also means that no two "virtual panels" can ever be
allowed to interpenetrate. No biggie.
subsystem to Flightgear. No more functionality is implemented
than at present (apart from an ATIS bug-fix - station wouldn't
change if the radio was switched directly from one station to
another) but it is much neater than the current hack and should be
easily extendable.
Some cruft is still probably left over in radiostack.[ch]xx such as
the bindings to the comm frequencies but I'll leave removing those
until I'm sure they're not needed there.
1. Enable auto-configure on more versions of auto tools. (configure.in)
2. Warnings from auto-configure tools. (src/Time/Makefile.am)
3. Typo: "the it's" -> "its". (docs-mini/README.Joystick)
4. Remove definition of FGViewer::update() that now is (or can be) pure
virtual\
. (src/Main/viewer.cxx)
5. Preferred form of function name according to comments in plib:
"not_working"\
-> "notWorking". (src/Sound/soundmgr.hxx)
- automake-1.4 sets default values for INCLUDES which we can't
overwrite.
- automake-1.5 renames this to DEFAULT_INCLUDES and leaves INCLUDES
open for the developer to use.
Thus for automake-1.4 we are forced to 'append' to INCLUDES and in
automake-1.5 we can just set the value to whatever we like.
Unfortunately, the behaviors of the two versions are mutually
incompatible.
The solution I am committing now works for both versions but
automake-1.5 generates a lot of spurious warning messages that are
annoying, but not fatal.
(i.e. multiloop). Most subsystems currently ignore the parameter, but
eventually, it will allow all subsystems to update by time rather than
by framerate.
Here's an unusual patch for FlightGear -- I've created .cvsignore
files for every source directory, to make CVS output more informative.
This is especially nice when using cvs-examine from (X)Emacs to look
for changes.
- delete table in destructor
** src/FDM/flight.cxx
- bind engine properties in FGInterface::bind, and publish properties
for all engines rather than just engine 0
** src/Main/fg_props.cxx
- removed all engine properties; now bound in FGInterface::bind
** src/Sounds/fg_fx.cxx
- support multiple engine and cranking sounds
** src/Sounds/fg_fx.hxx
- support multiple engine and cranking sounds
Heres an update to the ATIS stuff. In brief:
The possible buffer overflow in the display with wind should
hopefully be fixed.
Temperature is taken from the global temperature property instead
of being hardwired.
The display class now includes an implementation of the member
function to change the repeating message.
The message callsign is no longer hardwired. The first message
from each station is generated with a random callsign.
Subsequent messages from the same station have the callsign
incremented every hour. A map of airport-id vs. last callsign and
transmission time is kept for each station that has transmitted for
the duration of the FlightGear session. The logic might be flaky if
FlightGear is run for more than 24 hours at a stretch between
visiting the same ATIS station though! (ie I don't check the day.)
This map is kept in the atislist class. This might not be the best
long-term place for it (in an ATC class of some sort might be
better), but it works for now.
fix startup sequence problems where we initialize the FDM before we know
the desired starting altitude.
These changes delay fdm initialization until the local tile has been loaded
and we can do a real intersection and find the true ground elevation.
In order to do this, I depend more on the property manager as glue, rather
than the FGInterface.
There are some glitches still when switching to a new airport or reseting
the sim. I will work on addressing these, but I need to commit the changes
so far to keep in sync with other developers.
meaning of "win_ratio". I've removed win_ratio and added fov_ratio and
aspect_ratio, as it seems both are needed.
n.b. The multi-line changes in fgReshape comprise:
extracting common code,
removing an apparently arbitrary "+1" on the view height,
changing "set_win_ratio" to "set_aspect_ratio".
in init)
- free data structures in destructor
- ensure that interpolation tables are allocated before any searching
is done; otherwise, starting at some locations (such as CYYZ) causes
a segfault
with different modifiers (the format of the key bindings has changed
again slightly, adding a <code>..</code> element; see keyboard.xml for
details).
2. Modified FGInput to try default modifiers for ctrl, shift, and alt
when the initial bindings fail (i.e. you don't have to specify
mod-shift explicitly for upper-case 'P' any more).
3. Fixed problems with properties and panel reloading reported by
Martin Dressler and John Check.
4. Updated preferences.xml to get rid of obsolete references to
/controls/brakes/left and /controls/brakes/right (as reported by John
Check).
There were also two non-bugs reported by John Check:
(a) Differential braking doesn't work (John was using the obsolete
properties from #4 above).
(b) Duplicates show up in the property tree using the telnet interface
(the property tree doesn't show indices, and John was seeing separate
entries for each possible engine, etc.).