there was the situation where four directories contained jst two files,
of which three directories were aircraft related, and one directory contained
test code from Curt that might be better of in SimGear anyhow.
This is just a patch to move a bunch of files to new locations. In case of
local changes to any of them you can do the following:
move replay.[ch]xx from src/Replay to src/Aircraft
move control.[ch]xx from src/Control to src/Aircraft
move ssgEntityArray.[ch]xx from src/Objects to simgear/screen
In addition it has been decided only to use .[ch]xx files in all directories
unless it's contained within an FDM specific directory, in which case the
author is free to do whatever (s)he wants.
In this repspect the following files have been renamed in src/Multiplayer:
tiny_xdr.[ch]pp has become tiny_xdr.[ch]xx
multiplaymgr.[ch]pp has become multiplaymgr.[ch]xx
I stumbled across two memory errors with two wrong const references to
std::string.
As I fixed that, I also moved aircraft_dir which is only used from UIUC into
UIUC. With that uiuc_aircraftdir.h is empty and can be removed.
There was a patch from Manuel Masing a few months ago which cleaned up
SGLocation's way depending on input values. That means that with that patch
SGLocation does no longer have calls with unneeded input arguments.
I took his patch and integrated that into flightgear and made maximum use of
that changes.
Erik Hofman:
Remove some duplicate code that was moved to simgear/compiler.h
I have prepared a patch that:
- Introduces a FGTileMgr::scenery_available method which asks the tilemanager
if scenery for a given range around a lat/lon pair is already loaded and make
use of that method at some -9999 meter checks.
- Introduces a FGScenery::get_elevation_m method which queries the altitude at
a given position. In constrast to the groundcache functions this is the best
choice if you ask for one *single* altitude value. Make use of that thing in
AI/ATC classes and for the current views ground level. At the current views
part the groundcache is reused if possible.
- The computation of the 'current groundlevel' is no longer done on the
tilemanagers update since the required functions are now better seperated.
Alltogether it eliminates somehow redundant terrain level computations which
are now superseeded by that more finegrained functions and the existence of
the groundcache. Additionally it introduces an api to commonly required
functions which was very complex to do prevously.
I have traced that reset on carrier problem down to several problems. One of
them is the fact that on reset the carrier is updated while the aircraft is
not. That made the aircraft drop down an elevator sometimes. Depending on the
passed realtime while loading some parts of the scenery.
/sim/startup/splash-progress)
- a string in /sim/startup/splash-title is displayed on top of the screen
and by default empty
- the splash image is scaled down if 512x512 is too big
- code cleanup
I have done a patch to eliminate the jitter of 3D-objects near the viewpoint
(for example 3D cockpit objects).
The problem is the roundoff accuracy of the float values used in the
scenegraph together with the transforms of the eyepoint relative to the
scenery center.
The solution will be to move the scenery center near the view point.
This way floats relative accuracy is enough to show a stable picture.
To get that right I have introduced a transform node for the scenegraph which
is responsible for that shift and uses double values as long as possible.
The scenery subsystem now has a list of all those transforms required to place
objects in the world and will tell all those transforms that the scenery
center has changed when the set_scenery_center() of the scenery subsystem is
called.
The problem was not solvable by SGModelPlacement and SGLocation, since not all
objects, especially the scenery, are placed using these classes.
The first approach was to have the scenery center exactly at the eyepoint.
This works well for the cockpit.
But then the ground jitters a bit below the aircraft. With our default views
you can't see that, but that F-18 has a camera view below the left engine
intake with the nose gear and the ground in its field of view, here I could
see that.
Having the scenery center constant will still have this roundoff problems, but
like it is now too, the roundoff error here is exactly the same in each
frame, so you will not notice any jitter.
The real solution is now to keep the scenery center constant as long as it is
in a ball of 30m radius around the view point. If the scenery center is
outside this ball, just put it at the view point.
As a sideeffect of now beeing able to switch the scenery center in the whole
scenegraph with one function call, I was able to remove a one half of a
problem when switching views, where the scenery center was far off for one or
two frames past switching from one view to the next. Also included is a fix
to the other half of this problem, where the view position was not yet copied
into a view when it is switched (at least under glut). This was responsible
for the 'Error: ...' messages of the cloud subsystem when views were
switched.
a safe undersleep() to conserve cpu. Essentially we undersleep our target by
just a bit (to avoid the chance of oversleeping.) Then we finish off the
remaining time slice with a busy-wait loop.
Norman Vine wrote :
> Frederic Bouvier writes:
>
>> Quoting Andy Ross:
>>> * Hopefully in a CPU-friendly way. I know that older versions of
>>> the NVidia drivers did this by spinning in a polling loop
>>> inside the driver. I'm not sure if this has been fixed or not.
>>>
>>> From my experience, the latest non-beta Windows NVidia driver seems to eat CPU
>>
>> even with sync to vblank enabled. The CPU usage is always 100%.
>
> Buried in the PPE sources is a 'hackish' but portable way to limit CPU usage if the desired framerate is met
>
> /*
> Frame Rate Limiter.
>
> This prevents any one 3D window from updating faster than
> about 60Hz. This saves a ton of CPU time on fast machines.
>
> ! I THINK I MUNGED THE VALUE FOR ulMilliSecondSleep() NHV !
> */
>
> static ulClock *ck = NULL ;
>
> if ( frame_rate_limiter )
> {
> if ( ck == NULL )
> {
> ck = new ulClock ;
> ck -> update () ;
> }
>
> int t_ms = (int) ( ck->getDeltaTime() * 1000.0 ) ; /* Convert to ms */
>
> if ( t_ms < 16 )
> ulMilliSecondSleep ( 16 - t_ms ) ;
> }
>
>
I implemented the method pointed out by Norman. It works great on windows and saves me a lot of CPU cycles. This way, I can get the same framerate in moderately populated areas and have CPU idle 50% of the time instead of wildly looping in the NVidia driver while waiting to sync on vblank.
It has been tested on Linux by Melchior. He saw the same gain in CPU cycles.
I've finished the emigration of the radiostack, and I've also removed it
completely. It turned out that the comm radio is completely implemented in
the ATC subsystem. I've changed the affected ATC files to point
to /instrumentation/com, but I guess that the maintainer of the ATC code
should decide wether to make it configureable, and how.
I also had to change some files in Network and Main. The changes in network
should be obvious, but the changes in Main were a bit suspect. The files
included radiostack.hxx, but they weren't directly depending on
radiostack-hxx. They were depending on other files that were included by
radiostack.hxx. I got it to compile, but I'm not sure if I included the
correct directly depending file.
For the data directory I changed every occurrence of /radios/
with /instrumentation/ with this simple one-liner that I found on the net:
find -name '*.xml' -type f | xargs perl -pi -e
's/\/radios\//\/instrumentation\//g'
Instead of me sending all the files that got changed by this I suggest that
you execute the one-liner yourself. Of course I can not guarantee that this
will work perfectly, but I considered hand editing to be not an option (I'm
lazy). I don't want to test every aircraft to see if everything still works,
I think it's better to wait and see if anyone complaints about broken nav
radios/instruments.
Don't overwrite user settings from config files.
fgfs had in any case set bump-mapping to false, no matter if this
node did already exist (because it was defined in a config file).
This is a patch to make display list usage optional. They are on by default.
Use --prop:/sim/rendering/use-display-list=false to use immediate mode.
There is also a change in exception handling in main.cxx and bootstrap.cxx
Split up main.cxx into a program manegement part (which remains in
main.cxx) and a render part (the new renderer.?xx files). Also turn
the renderer into a small class of it's own. At this time not really
exctining because most of the stuff is still global, but it allows us
to slowly migrate some of the global definitions into the new class.
The FGRenderer class is now managed by globals, so to get the renderer
just call gloabals->get_renderer()
At some pijt it might be a good idea to also turn the remaining code in
main into a class of it's own. With a bit of luck we end up with a more
robust, and better maintainable code.
1. The listener is always positioned at the origin.
2. All sounds eminate from the aircraft's model position.
3. Sound positions are relative to the listener location.
my code was accidentally drawing the cockpit twice
in view 0. This patch should fix the problem of
lights not seen through canopies or prop discs.
It was also drawing the lights ( ground and rw )
after the clouds, so they were not obscured by
them.
I restored the output to cout / cerr
for the options and the warning for the version mismatch.
There is a dummy SG_LOG to allow the windows version to
popup the console.
The snapshot rendering use multipass now.
FG_ENABLE_MULTIPASS_CLOUDS must be defined to enable
the algorithm. I made this because the stencil buffer
must be initialized at the beginning of the program and
OpenGL can fallback to software rendering if it can't
find a visual with stencil buffer. I didn't touch the
configure script, so CXXFLAGS=-DFG_ENABLE_MULTIPASS_CLOUDS
must be set before running ./configure.
If FG_ENABLE_MULTIPASS_CLOUDS is defined, the main render
loop begins by reading the /sim/rendering/multi-pass-clouds
property. It is a boolean property so there are only two
quality levels. false means no multi pass and no use of
the stencil buffer, true means an additionnal pass for
both upper and lower cloud layers.
The algorithms are as follow :
/sim/rendering/multi-pass-clouds=false
1. draw sky dome
2. draw terrain only
3. draw clouds above the viewer
4. draw models except the aircraft
5. draw clouds below the viewer
6. draw the aircraft.
The cloud rendering doesn't update the depth buffer.
This means that models overwrite clouds above the viewer.
This is only noticeable for tall buildings and when
flying very low. Also, drawing low clouds after models
means that they are not blended with models' translucent
surfaces. Large transparent area require alpha test
enabled and AI aircraft canopy are making holes. The
pilot's aircraft being rendered at the end, there is no
problem with canopy or prop disc.
/sim/rendering/multi-pass-clouds=true
1. draw the sky dome
2. draw the terrain only
3. draw all clouds
4. draw models except the aircraft
5. redraw the clouds where the models where drawn ( stencil
test on )
6. draw the aircraft
The assumptions made by this algoritm are that the terrain
is not transparent ( should be true in all cases and
that there are no clouds between the aircraft and the viewer.
Assuming these facts, there should be no blending bugs.
The screenshot rendering is not updated yet.
trying the --show-aircraft option, I noticed that I had
no output. This is because there are still output to
cout or cerr, that are not triggering my console patch
for windows. The patch attached use SG_LOG instead.
A request to hit a key is also added because otherwise,
the console window will disappear as soon as the program
stop.
This problem is minor though given the fact that fgfs.exe
is shipped with fgrun that do show the available aircraft
in a much nicer manner.
places now use sgCartToGeod() instead of rolling their own
approximation. And YASim is now using exactly the same 3D coordinate
system as the rest of FlightGear is.
makes more sense to keep I/O running. That way remote telnet connections
will still respond, and the sim can still accept and send data. This also
allows a remote script or gui to pause and (more importantly) be able to
the unpause the sim.
This patch is there to correct a problem that prevent to load static objects when specifying a relative fg-root or a different, relative, fg-scenery. It appears that there is a mix between fg-root, fg-scenery and PLIB's model-dir.
It has been reported on the list that users are not able to see the buildings, especially those running the win32 builds because they run 'runfgfs.bat' that set FG_ROOT=./DATA.
I decided not to use model-dir because it just add confusion and to build a valid path earlier.
I have added a fledgling replay system that records flight data and control
positions during the flight.
I have added an internal command called "replay" which will trigger a replay
of the entire saved flight data set. This could be bound to a keyboard or
menu command, in fact this entire module is screaming for someone to build
a gui to control playback speed, amount of playback, etc.
This is the initial version so there are kinks that still need to be worked
out, please be patient.
/sim/rendering/horizon-effect
toggle sun and moon resizing effect near the horizon
/sim/rendering/enhanced-lighting
toggle enhanced runway lighting on or off
/sim/rendering/distance-attenuation
add distance attenuation to the enhanced runway lighting
etc.
Improved the weather system to interpolate between different
elevations and deal with boundary-layer conditions. The configuration
properties are now different (see $FG_ROOT/preferences.xml).
Normally for smoothest frame rates you would configure to sync
to your monitor's vertical refresh signal. This is card/platform
dependent ... for instance with Linux/Nvidia there is
an environment variable you can set to enable this feature.
However, if your monitor is refreshing at 60hz and you can't quite sustain
that with flightgear, you can get smoother frame rates by artificially
throttling yourself to 30hz. Note that once you are about about 24fps, it
is *change* or inconsistancy in frame rate that leads to percieved jerkiness.
You want to do whole divisors of your monitor refresh rate, so if your
display is syncing at 75 hz, you might want to try throttling to 25 hz.
Melchior FRANZ:
The reason: these models are to be added to the scenery, but the
scenery isn't yet set up at this point. The correct order is:
- set up model_lib (needed by the scenery)
- set up scenery (needed by the model manager)
- set up model manager
the ascii scenery file format has actually worked in quite some time, and the
ADA runway light code has been supersceded by a slightly different mechanism.
scene management code and organizing it within simgear. My strategy is
to identify the code I want to move, and break it's direct flightgear
dependencies. Then it will be free to move over into the simgear package.
- Moved some property specific code into simgear/props/
- Split out the condition code from fgfs/src/Main/fg_props and put it
in it's own source file in simgear/props/
- Created a scene subdirectory for scenery, model, and material property
related code.
- Moved location.[ch]xx into simgear/scene/model/
- The location and condition code had dependencies on flightgear's global
state (all the globals-> stuff, the flightgear property tree, etc.) SimGear
code can't depend on it so that data has to be passed as parameters to the
functions/methods/constructors.
- This need to pass data as function parameters had a dramatic cascading
effect throughout the FlightGear code.
The one to fg_init.cxx initialises the AI subsystem regardless of whether it's enabled or not so that later enabling by the user doesn't crash it, and the one to main.cxx avoids running the ATC manager and ATC display system unless enabled.
This is just a port of an old 3D HUD patch to the new view code.
This pans the HUD with the view, by pasting it onto a quad fixed in front of the viewer. It also fixes the awful, arbitrary scaling problems the HUD code has. The old HUD only looks right when viewed at 1024x768 and 55 degree FOV. This works the scale out magically so that it looks right in all views. It also redefines the "<compression-factor>" tag in the ladder to (1) mean compression instead of expansion and (2) have non-psychopathic units (now "1" means 1 degree per degree). Fix this in your existing HUD ladder files before reporting bugs. It's definitely a cosmetic win -- the velocity vector points at the right thing and the horizon lines up properly.
Norman wrote:
I have created a modified version of Andy's patch that implements the 3D HUD as the 'normal' and the 2D HUD as the 'minimal' HUD. < i > and < shift I > keys
Some more cmall changes to the SimGear header files and removed the
SG_HAVE_NATIVE_SGI_COMPILERS dependancies from FlightGear.
I've added a seperate JSBSim patch for the JSBSim source tree.
experimental lighting rendering (which is very expensive on my
machine, for example). To use distance attenuation,
/sim/rendering/distance-attenuation must also be true.
It adds a command line options to enable/disbale distance attenuation
using a property rather than using a #define inside the code. It also
adds a small change for systems that don't support the OpenGL extension,
so that the lights *do* fade away as they get furher away but they don't
get smaller in size.
I have updated the lighting code to use fog to try to fade the runway lights
in smoothly, but still keep them from being visible until you are about 7-10
miles out, and then only have them be very faint at first. I think what I
have is a bit nicer than before since it completely avoids the "popping" effect,
but I've very open to tweaking the actual ranges based on people's real
world experiences.
The general idea is to help clean up some aspects of the FDM init and be
able to provide startup conditions in a less ambiguous manner.
Previously, things like positions, orientations, and velocites were set on
"the bus". These had to be read by the FDMs which then were supposed to
initialized themselves to those values and turn write around and start
modifying those values. It was messy and cumbersome.
Now, all the initial fdm conditions are written to a sub-[property-]tree
under /sim/presets/
The values in /sim/presets/ always stay set to what the user has specified.
The user can change these at his/her liesure, and then request a "reset"
which will reset to the new conditions. I don't even want to say how this
worked before. :-)
Now, an script, or gui interface can stage a set of initial conditions while
the sim is running (without disrupting it), and then call "reset" to commit
the change.
People who should worry about all this are FDM writters, and a small few
others who care about over all program structure and flow.
The biggest and coolest patch adds mouse sensitivity to the 3D
cockpits, so we can finally work the radios. This ended up requiring
significant modifications outside of the 3D cockpit code. Stuff folks
will want to look at:
+ The list of all "3D" cockpits is stored statically in the
panelnode.cxx file. This is clumsy, and won't migrate well to a
multiple-aircraft feature. Really, there should be a per-model list
of 3D panels, but I couldn't find a clean place to put this. The
only handle you get back after parsing a model is a generic ssg
node, to which I obviously can't add panel-specific methods.
+ The aircraft model is parsed *very* early in the initialization
order. Earlier, in fact, than the static list of allowable command
bindings is built in fgInitCommands(). This is bad, as it means
that mouse bindings on the instruments can't work yet. I moved the
call to fgInitCommands, but someone should look carefully to see
that I picked the right place. There's a lot of initialization
code, and I got a little lost in there... :)
+ I added yet another "update" hook to the fgRenderFrame routine to
hook the updates for the 3D panels. This is only required for
"mouse press delay", and it's a fairly clumsy mechanism based on
frame rate instead of real time. There appears to be delay handling
already in place in the Input stuff, and there's a discussion going
on about different mouse behavior right now. Maybe this is a good
time to unify these two (now three) approaches?
Now the options can be localized as well. This adds a slight problem for
the --language options, but not that much (worst case, the strings are
loaded twice consuming some more memory). I tried to be as accurate as
posiible when copying the options texts, but there might be some
mostakes left.
This adds supports for a language specific font, defined in locale.xml
I've also moved the fgInitLocale() routine from main.cxx to fg_init.cxx
to prevent an ungly extern definition in options.cxx.
are now working. A runway light is defined by a point and a direction. The
point and direction are combined with the local up vector to create a small
triangle orthogonal to the direction. The two ficticous corners of the
triangle are given an alpha value of zero, the orignal corner is given an
alpha of one. The triangle is drawn in glPolygonMode(GL_FRONT, GL_POINT)
mode which means only the corner points are drawn, and since two have alpha=0
only the original point is drawn. This is a long way to go to draw a point,
but it ensures that the point is only visible within 90 degrees of the light
direction, behind the light it is not visible. This is still a long way
to get to drawing a point, but we use an environement map, with the direction
vector as the normal to mimic a light that is brightest when viewed head
on and dimmest when viewed perpendicularly or disappears when viewed from
behind.
- warning, there is a bug in how the current runway light direction vector
is calculated which will adversely effect runway lighting. The airports
should be regenerated in order to fix this problem.
This patch fixes some bugs for correctly reporting un-updated
configuration files, and adds support for a --language=<code>
commandline option, overriding the language specified by the OS.
jump whenever you cross a tile, but there are currently a lot of other
positioning problems as well, so this doesn't really detract too much and
means you can play with 3d clouds from just about any starting point.