This is a fix for my earlier "Remove some hardcoded dependencies between fdm,
viewer and acmodel" patch. The problem was discovered when testing the
wrightFlyer.
deriving a class and the base class used this type.) Return to using
const char and hope people compiling against earlier versions of plib
have compilers that think typedef const char cchar; char *abc; is equivalent
to const char *abd;
This patch adds the ability to do a simple scaling of input without having to
add hardcoded helpers. Example:
<reference>
<prop>/autopilot/settings/vertical-speed-fpm</prop>
<scale>0.01667</scale>
</reference>
The message 'Alert: catching up on tile delete queue'
comes from the fact that 48 tiles are scheduled and
added to the cache at startup before the plane location
is initialized. My proposed patch is to initialize
SGLocation with an invalid position and detect this
fact before scheduling tiles. I prefer to do that
rather than testing for lon and lat being 0,0 because
it is a valid position and someone could want to fly
near Accra.
This patch is for windows only. It hides the console window
until there is a message to print. It only support SG_LOG,
that I think is the right way to display something in FG.
Add FGPredictor class to xmlauto. Add support for horizontal navigation based
on flight track as opposed to heading. Add crosstrack-error support to nav.
Simplify error adjust calculation for horizontal nav (better interception).
Fixed potential divide by zero that was producing nan issues in the xmlauto
code.
I've done som more work on the gps instrument.
- You can now input airport-, nav- or fix-ID to select a waypoint.
- You have to specify either "airport", "nav" or "fix" in the waypoint-type
property (some fixes and navs have identical IDs).
- Formatted the time to waypoint output.
- Cleaned up and changed some propery names (wp-heading -> wp-bearing).
- I've also added a name member to the FGNav class so that the gps instrument
can get the name of the nav.
- Changed the airport name parsing in simple.cxx.
I've done some changes to xmlauto.cxx.
Only calculate the derivate filtering if derivate time Td is greater than
zero. This means that one can set Td=0.0 in the xml file to completely remove
the derivate action. (Setting Td to zero in the current version would lead to
a division by zero and crash.)
Setting the integrator time Ti to zero doesn't make sense, right! I've
modified so that setting Ti to zero results in the integral action being
completely removed.
null space without killing the engine (hardware specific problem.)
- NMEA output: I'm slightly confused but it appears that a real GPS outputs
traditional unix line endings on it's gps strings, we were outputing DOS
CR/LF which was causing some confusion. This changes the line ending
convention to match that of a real gps.
- Calculate true ground track and speed for NMEA.
explicitely. This value has always been feet, but there were a couple places
in the code that assumed this elevation was meters. The result was that you
could park directly over the top of the Black Forest VOR (112.50) NE of KCOS
and get a dme reading of 2.5 or so. This problem is now resolved.
I added some things to the AI stuff to improve the AIThermal processing.
Before, all the thermals were processed in order, and the last one overwrote
the prior one. Now, only the data from the nearest thermal is kept. This
way a tile can be populated with many thermals, and (as long as they have the
same diameter) the one nearest the airplane correctly takes effect. This
will make us ready for the next step, "auto-thermaling", where FlightGear's
tile manager can cover a tile with thermals, and set the thermal strength
based on land-use type.
I moved the enumerated object_type to the base class. When an AI object is
created it now sets the _otype variable in the base class. This lets the AI
manager find out what kind of AI object it is dealing with, using the base
pointer. I also added a function isa() to the base class, so the manager can
process objects differently based on their type.
The AI manager now sends AIThermal processing to a different function, where
only the data from the nearest thermal is kept. After the manager processes
all the AI objects, then the results from the nearest thermal are applied to
wind-from-down.
occasionally cause a large number of valid stations to be flagged as invalid.
This *seemed* like a "race condition" type problem because there were some
assumptions in the communication between the main process and the threaded
loader which if they broke down could lead to this problem.
In the process of removing this ambiguity, I restructured the threaded
(and non-threaded) metar fetching code a bit. Some of the top level logic
(which Erik politely left untouched) didn't make nearly as much sense in the
context of a threaded metar loader and could have contributed to some of the
wierdness I was seeing.
Here's a new batch of AI code which includes a working radar instrument.
I put the radar calculations into the existing AIAircraft class. It was
easier that way, and it can always be migrated out later if we have to.
Every tenth sim cycle the AIManager makes a copy of the current user state
information. When the AIAircraft updates it uses this information to
calculate the radar numbers. It calculates:
1) bearing from user to target
2) range to target in nautical miles
3) "horizontal offset" to target. This is the angle from the nose to the
target, in degrees, from -180 to 180. This will be useful later for a HUD.
4) elevation, in degrees (vertical angle from user's position to target
position)
5) vertical offset, in degrees (this is elevation corrected for user's pitch)
6) rdot (range rate in knots, note: not working yet, so I commented it out)
and three items used by the radar instrument to place the "blip"
7) y_shift, in nautical miles
8) x_shift, in nautical miles
9) rotation, in degrees
The radar instrument uses the above three items, and applies a scale factor to
the x-shift and y-shift in order to match the instrument's scale. Changing
the display scale can be done entirely in the XML code for the instrument.
Right now it's set up only to display a 40 mile scale.
The radar is an AWACS view, which is not very realistic, but it is useful and
demonstrates the technology. With just a little more work I can get a HUD
marker. All I need to do there is make a bank angle adjustment to the
current values.
I went through the AI code to put the "bank" node back into the config file,
so the models can fly circles. While I was in there I made some other
changes.
*) Moved the initialization of roll, tgt-roll, pitch ... etc, from init()
into the constructor, so it wouldn't over-write the config settings.
*) Changed the altitude getter to remove the meters-to-feet conversion. The
altitude is kept internally in feet. Only the scenery code needs meters.
*) Added "bank" item for config file (for type=aircraft). Left bank is
negative.
*) Added "rudder" item for config file (for type=ship). Left rudder is
negative. Internally this is stored in the "roll" variable, but the ship
model doesn't roll. It uses the "roll" variable for turning though.
The following puts a tanker at 3000 feet, 6 nm northwest of KSFO. On takeoff,
the tanker is visible over the hanger building at one-o'clock.
<entry>
<type>aircraft</type>
<class>jet_transport</class>
<path>Aircraft/737/Models/boeing733.xml</path>
<speed-KTAS type="double">320.0</speed-KTAS>
<altitude-ft type="double">3000.0</altitude-ft>
<longitude type="double">-122.455</longitude>
<latitude type="double">37.69667</latitude>
<heading type="double">200.0</heading>
<bank type="double">-15.0</bank>
</entry>
are many recognized limitations and inefficiencies with this entire approach,
however, it's a quick and dirty way to get something working, where before
we didn't.
The last change from Curt to Airports/simple.[ch]xx made
GUI/AirportList.cxx not compilable because of the loss of
a '*' in getAirport.
Also : fabs is not defined under MSVC unless <math.h> is
included.
updates based on the "closest" airport with metar data available. Note that
the web based query is in the main loop and causes brief sim pauses. Update
rate (once per minute) needs to be tweaked with, but is a good value for
testing.
seem to be fully deterministic in P-only mode. This old simple controller
does what I expect, so it's good for calulating stage #1's of multi-stage
controllers.
I just met a couple of warnings about depricated headers beeng used.
Please take a look at patch (against today cvs) attached wich
does strstream -> stringstream migration. I hope you found it usefull.
latest version is attached to reduce need to search property
tree each frame. I don't think this will break any Fg code and
opengc has been updated a while back and have had no complaints ;-) so it
should be a no impact change, hopefully.
controls in the cockpit vs. which wheels they apply to. FlightGear now
sets /controls/gear/brake-left, /controls/gear/brake-right, and
/controls/gear/brake-parking. It should be up to the FDM to sort out
which wheels under which circumstances are affected by these controls
and ultimately what happens to the physical motion of the aircraft.
net_ctrls.hxx net_fdm.hxx net_fdm_mini.hxx net_gui.hxx
I, Curtis Olson, being the primary author of these header files, hereby
release them into the public domain to facilitate interfacing FlightGear
with other external code (which might need to remain proprietary or may
be licensed under some not quite GPL compatible terms.)
account for variation in lighting alignment, but it's more useful than the
previous attempt which was based on a misunderstanding of how environment
mapping worked.
to handlers which might want to assign it to a SGPropertyNode_ptr for
reference counting (Nasal does, for instance, to prevent garbage
collector interactions). If that smart pointer is then destroyed,
that will free this object while it is still live.
Simply use a SGPropertyNode_ptr here; the code ends up smaller as a
bonus, since FGBinding no longer has to deallocation for _arg.
places now use sgCartToGeod() instead of rolling their own
approximation. And YASim is now using exactly the same 3D coordinate
system as the rest of FlightGear is.
scripts) to create dialogs at runtime. Augment "dialog-close" to take
a name argument, allowing code other than PUI callbacks to close
dialogs.
The changes to the GUI directory to enable this are actually minor,
basically amounting to using SGPropertyNode_ptr reference counting
(the GUI subsystem no longer "controls" the dialog property trees, so
it can't delete them).
interface, and use it to cache FGNasalScript objects returned from
a new parseScript() method.
Added a rand() function.
Added an interpolate() function interface to the new SGInterpolator
subsystem.
the core YASim stuff. Mostly cosmetic: whitespace adjustment, dead
code & meaningless comment removal, a little code motion to better
partition the helicopter handling from the original code (no more
giant if() { ... } around the solver). Added a warning to the parser
to try to eliminate the string booleans that crept in.
There should be NO behavioral changes with this checkin.