currently just returns a lagged normalized value in the range of 0-1 that
is proportional to N1. It's up to the engine gauge to scale to the right
range. This is for lack of a real model of these items so we can have
something to drive the engine gauges.
As I had reported on 2004/8/4 00:02:56 ("yasim + bo105 + vrp + @#%$#@ == argh!")
there must be a bug somewhere in YASim, which is responsible for the Bo105
turning around the FDM origin (nose tip) rather than the CG. Some people assumed
that I was just another victim of the "view offset" illusion, but this wasn't
and isn't the case.
Maik Justus (the rotor man) has now supposedly found the bug in YASim[1].
Look at this code in FDM/YASim/Integrator.cpp:35--66:
Stub in hooks for Propeller feathering controls and the turbo prop "condition"
lever.
I added a line in FGFDM.cpp to force control properties to exist if they
don't already. This way you can specify anything you want and find them
in the property browser, otherwise no one else may create them and you are
stuck.
In PropEngine::solve() the code original sets _running = true at the
beginning and then sets running = false at the end. I changed this to
save the current value at the start, set to true, solve(), and then
restore the original value at the end. That way if we start off with
_running = true, we don't have to hack up the calc() routine which wasn't
using the value anyway.
Finally I added some very initial support to shut down a turbine engine
(_running = false) when the condition lever goes to zero.
the 30 seconds that Maik had originally intended, according to the comment.
This is important for the pending sound and rotor disc changes (and of course
for realism).
"slow/windmilling propeller" regime. I'm happy with the foundations
of the solution, but this hasn't been complete tested yet. The
solution behavior seems fine on the planes I tried.
PistonEngine class has grown an "Engine" superclass. Some other stuff
moved around too, and I cleaned up some property naming while I was in
there. This hasn't been tested very thorougly, hopefully I didn't
break anything.
work on the pa28 idle and without creating ridiculous side effects
(like being able to fly the aircraft with the starter motor, heh).
This one looks pretty good for now, pending work on the propeller to
get its low speed drag in line with reality.
reads the /consumables tree for input to determine weights, but
places output only in /engines/engine[n]/fuel-consumed-lbs where
it gets picked up by the Nasal code.
places now use sgCartToGeod() instead of rolling their own
approximation. And YASim is now using exactly the same 3D coordinate
system as the rest of FlightGear is.
the core YASim stuff. Mostly cosmetic: whitespace adjustment, dead
code & meaningless comment removal, a little code motion to better
partition the helicopter handling from the original code (no more
giant if() { ... } around the solver). Added a warning to the parser
to try to eliminate the string booleans that crept in.
There should be NO behavioral changes with this checkin.
now read the config file out of the individual aircraft directory rather
than the collective Aircraft-yasim/ directory (which is now obsolete.)
This requires a corresponding update of the base package cvs.
The Propeller class ignored negative RPM but still returned a torque
value, which ratcheted up a higher and higher negative RPM until drag
overwhelmed the aircraft.
In reality, the propeller should windmill at a reasonable postive RPM,
introducing a constant drag on the aircraft -- the propeller should
*not* stop unless the plane is flying very slowly. That's a future
project.
> > Here's a patch to add manual-pitch control to the propeller in YASim. A new
> > control axis "PROPPITCH" is added. Requires "manual-pitch" boolean property
> > in the "propeller" tag.
> >
> > Tags and Properties to add in order to enable:
> >
> > manual-pitch="true"
> >
> > <control-input axis="/controls/engines/engine[0]/propeller-pitch"
> > control="PROPPITCH" src0="0" src1="1" dst0="0.40" dst1="0.80"/>
> >
> > Note that for the time being, excessively low RPM or excessively high RPM is
> > brought undercontrol by a scaling range defined in the control-input tag
> > (see "dst0" and "dst1" properties).
I split the FGModelPlacement code out into it's own set of source files.
I created two versions of the fgLoad3DModel() routine. One that is
unecumbered by a panelnode dependency and one that is. acmodel.cxx is
the only place that needs to load an aircraft with instrument panels.
model.[ch]xx are now pretty much free to move over into simgear.
loader.[ch]xx should be able to follow closely behind.
This will be a big step towards being able to move the material management
code over into simgear.
scene management code and organizing it within simgear. My strategy is
to identify the code I want to move, and break it's direct flightgear
dependencies. Then it will be free to move over into the simgear package.
- Moved some property specific code into simgear/props/
- Split out the condition code from fgfs/src/Main/fg_props and put it
in it's own source file in simgear/props/
- Created a scene subdirectory for scenery, model, and material property
related code.
- Moved location.[ch]xx into simgear/scene/model/
- The location and condition code had dependencies on flightgear's global
state (all the globals-> stuff, the flightgear property tree, etc.) SimGear
code can't depend on it so that data has to be passed as parameters to the
functions/methods/constructors.
- This need to pass data as function parameters had a dramatic cascading
effect throughout the FlightGear code.
- NED and UVW are working correctly
- knots is giving true airspeed instead of calibrated airspeed
- mach is not working at all
This desperately needs a trimming routine.
really useful unless we simultaneously change the per-iteration deltas
to be smaller. Add another pseudo-tunable to control the speed with
which we change values across iterations. As it turns out, this is
much more effective than the threshold tunable. It does come at the
cost of lower solution performance, however.
Link the standalone executable against the source files explicitly rather
than libYASim, as the Irix linker can't handle the unneeded dependance on
other parts of FlightGear.
isn't well-constrained by the solution process is the drag-vs-aoa curve.
The default value that YASim picked was very steep, and resulted in most
of the jets flying their approaches *way* behind the power curve. This
changes the default to be more forgiving, and adds an "idrag" tunable
to the configuration file for tweakers.
Also, change the default gear springiness to be less stiff.
- Removed some old cruft.
- Removed some support for older versions of automake which technically was
correct, but caused the newer automakes to squawk warnings during an
initial sanity check (which isn't done very intelligently.)
NOTE: this fix is technically not correct for older version of automake.
These older version use the variable "INCLUDES" internally and could have
them already set to an important value. That is why we were appending
our values to them. However, newer versions of automake don't set this
value themselves so it is an error to append to a non-existant variable.
We seem to "get away" with overwriting the value on older versions of
automake, but if you have problems, consider upgrading to at least
automake-1.5.
instrument. This needs to move somewhere permanent.
Also, remove a bogus fuel consumption setting that (1) was off by a factor
of 3600 (hours, not seconds) and (2) collided with identical code in FGFDM.
the amount of drag that the produced lift *would* have produced given an
unflapped air surface. A nifty trick involving the assumption that AoA is
small works for this, and produces plausible results in the high AoA case
as well.
Also, trim for approach using the elevator-trim control, not elevator.
Just cosmetic for current planes, but future ones might have differing
implementations of trim.
(and not the throttle setting), but the recalculation left in a degeneracy
when the target/throttle setting was exactly zero. Zero times a big number
is still zero. Fixed to use real math, not theoretical math.
won't apply the right gross weight due to fuel differences.
When solving for zero force, do so in the global frame, not the
aircraft's. In principle, this shouldn't matter (zero is zero in all
frames), but in practice this should help to avoid oscillations.
Calculating lift as force perpendicular to the ground (and not the
wing plane) is clearly the Right Thing, anyway.
Also added support for a /yasim/gross-weight-lbs property, which
should be generically useful.
when the lift/drag are really solid. And defer the approach trim until
the all four of the other variables are perfect. I believe this should
fix the solution failures under gcc 2.95.2.