1
0
Fork 0

Finally fixed the flap drag issue. Drag modifications need to be based on

the amount of drag that the produced lift *would* have produced given an
unflapped air surface.  A nifty trick involving the assumption that AoA is
small works for this, and produces plausible results in the high AoA case
as well.

Also, trim for approach using the elevator-trim control, not elevator.
Just cosmetic for current planes, but future ones might have differing
implementations of trim.
This commit is contained in:
andy 2002-06-15 05:40:02 +00:00
parent 22a55b25f9
commit 9541e06a1e
3 changed files with 46 additions and 16 deletions

View file

@ -41,7 +41,7 @@ FGFDM::FGFDM()
// Map /controls/elevator to the approach elevator control. This
// should probably be settable, but there are very few aircraft
// who trim their approaches using things other than elevator.
_airplane.setElevatorControl(parseAxis("/controls/elevator"));
_airplane.setElevatorControl(parseAxis("/controls/elevator-trim"));
}
FGFDM::~FGFDM()

View file

@ -10,8 +10,10 @@ Surface::Surface()
_cz0 = 0;
_peaks[0] = _peaks[1] = 1;
int i;
for(i=0; i<4; i++)
_stalls[i] = _widths[i] = 0;
for(i=0; i<4; i++) {
_stalls[i] = 0;
_widths[i] = 0.01; // half a degree
}
_orient[0] = 1; _orient[1] = 0; _orient[2] = 0;
_orient[3] = 0; _orient[4] = 1; _orient[5] = 0;
_orient[6] = 0; _orient[7] = 0; _orient[8] = 1;
@ -20,6 +22,7 @@ Surface::Surface()
_incidence = 0;
_slatPos = _spoilerPos = _flapPos = 0;
_slatDrag = _spoilerDrag = _flapDrag = 1;
_flapLift = 0;
_slatAlpha = 0;
_spoilerLift = 1;
@ -162,12 +165,12 @@ void Surface::calcForce(float* v, float rho, float* out, float* torque)
float stallMul = stallFunc(out);
stallMul *= 1 + _spoilerPos * (_spoilerLift - 1);
float stallLift = (stallMul - 1) * _cz * out[2];
float flapLift = _cz * _flapPos * (_flapLift-1);
float flaplift = flapLift(out[2]);
out[2] *= _cz; // scaling factor
out[2] += _cz*_cz0; // zero-alpha lift
out[2] += stallLift;
out[2] += flapLift;
out[2] += flaplift;
// Airfoil lift (pre-stall and zero-alpha) torques "up" (negative
// torque) around the Y axis, while flap lift pushes down. Both
@ -175,12 +178,14 @@ void Surface::calcForce(float* v, float rho, float* out, float* torque)
// edge. Convert to local (i.e. airplane) coordiantes and store
// into "torque".
torque[0] = 0;
torque[1] = 0.1667f * _chord * (flapLift - (_cz*_cz0 + stallLift));
torque[1] = 0.1667f * _chord * (flaplift - (_cz*_cz0 + stallLift));
torque[2] = 0;
Math::tmul33(_orient, torque, torque);
// Diddle X (drag) and Y (side force) in the same manner
out[0] *= _cx * controlDrag();
// The X (drag) force gets diddled for control deflection
out[0] = controlDrag(out[2], _cx * out[0]);
// Add in any specific Y (side force) coefficient.
out[1] *= _cy;
// Reverse the incidence rotation to get back to surface
@ -236,24 +241,48 @@ float Surface::stallFunc(float* v)
return scale*(1-frac) + frac;
}
float Surface::controlDrag()
// Similar to the above -- interpolates out the flap lift past the
// stall alpha
float Surface::flapLift(float alpha)
{
float d = 1;
d *= 1 + _spoilerPos * (_spoilerDrag - 1);
d *= 1 + _slatPos * (_slatDrag - 1);
float flapLift = _cz * _flapPos * (_flapLift-1);
if(alpha < 0) alpha = -alpha;
if(alpha < _stalls[0])
return flapLift;
else if(alpha > _stalls[0] + _widths[0])
return 1;
float frac = (alpha - _stalls[0]) / _widths[0];
frac = frac*frac*(3-2*frac);
return flapLift * (1-frac) + frac;
}
float Surface::controlDrag(float lift, float drag)
{
// Negative flap deflections don't affect drag until their lift
// multiplier exceeds the "camber" (cz0) of the surface.
// multiplier exceeds the "camber" (cz0) of the surface. Use a
// synthesized "fp" number instead of the actual flap position.
float fp = _flapPos;
if(fp < 0) {
fp = -fp;
fp -= _cz0/(_flapLift-1);
if(fp < 0) fp = 0;
}
// Calculate an "effective" drag -- this is the drag that would
// have been produced by an unflapped surface at the same lift.
float flapDragAoA = (_flapLift - 1 - _cz0) * _stalls[0];
float fd = Math::abs(lift * flapDragAoA * fp);
if(drag < 0) fd = -fd;
drag += fd;
d *= 1 + fp * (_flapDrag - 1);
// Now multiply by the various control factors
drag *= 1 + fp * (_flapDrag - 1);
drag *= 1 + _spoilerPos * (_spoilerDrag - 1);
drag *= 1 + _slatPos * (_slatDrag - 1);
return d;
return drag;
}
}; // namespace yasim

View file

@ -63,7 +63,8 @@ public:
private:
float stallFunc(float* v);
float controlDrag();
float flapLift(float alpha);
float controlDrag(float lift, float drag);
float _chord; // X-axis size
float _c0; // total force coefficient