1
0
Fork 0

Initial revision.

Maik Justus: First pass at helicopter support for YASim.
This commit is contained in:
curt 2003-10-16 14:40:13 +00:00
parent 0e370e6e28
commit 78cad450e6
6 changed files with 2163 additions and 0 deletions

814
src/FDM/YASim/Rotor.cpp Normal file
View file

@ -0,0 +1,814 @@
#include "Math.hpp"
#include "Surface.hpp"
#include "Rotorpart.hpp"
#include "Rotorblade.hpp"
#include "Rotor.hpp"
#include <stdio.h>
//#include <string.h>
namespace yasim {
const float pi=3.14159;
Rotor::Rotor()
{
_alpha0=-.05;
_alpha0factor=1;
_alphamin=-.1;
_alphamax= .1;
_alphaoutput[0][0]=0;
_alphaoutput[1][0]=0;
_alphaoutput[2][0]=0;
_alphaoutput[3][0]=0;
_alphaoutput[4][0]=0;
_alphaoutput[5][0]=0;
_alphaoutput[6][0]=0;
_alphaoutput[7][0]=0;
_base[0] = _base[1] = _base[2] = 0;
_ccw=0;
_delta=1;
_delta3=0;
_diameter =10;
_dynamic=1;
_engineon=0;
_force_at_max_pitch=0;
_force_at_pitch_a=0;
_forward[0]=1;
_forward[1]=_forward[2]=0;
_max_pitch=13./180*pi;
_maxcyclicail=10./180*pi;
_maxcyclicele=10./180*pi;
_maxteeterdamp=0;
_mincyclicail=-10./180*pi;
_mincyclicele=-10./180*pi;
_min_pitch=-.5/180*pi;
_name[0] = 0;
_normal[0] = _normal[1] = 0;
_normal[2] = 1;
_number_of_blades=4;
_omega=_omegan=_omegarel=0;
_pitch_a=0;
_pitch_b=0;
_power_at_pitch_0=0;
_power_at_pitch_b=0;
_rel_blade_center=.7;
_rel_len_hinge=0.01;
_rellenteeterhinge=0.01;
_rotor_rpm=442;
_sim_blades=0;
_teeterdamp=0.00001;
_translift=0.05;
_weight_per_blade=42;
}
Rotor::~Rotor()
{
int i;
for(i=0; i<_rotorparts.size(); i++) {
Rotorpart* r = (Rotorpart*)_rotorparts.get(i);
delete r;
}
for(i=0; i<_rotorblades.size(); i++) {
Rotorblade* r = (Rotorblade*)_rotorblades.get(i);
delete r;
}
}
void Rotor::inititeration(float dt)
{
if ((_engineon)&&(_omegarel>=1)) return;
if ((!_engineon)&&(_omegarel<=0)) return;
_omegarel+=dt*1/5.*(_engineon?1:-1); //hier 30
_omegarel=Math::clamp(_omegarel,0,1);
_omega=_omegan*_omegarel;
int i;
for(i=0; i<_rotorparts.size(); i++) {
Rotorpart* r = (Rotorpart*)_rotorparts.get(i);
r->setOmega(_omega);
}
for(i=0; i<_rotorblades.size(); i++) {
Rotorblade* r = (Rotorblade*)_rotorblades.get(i);
r->setOmega(_omega);
}
}
int Rotor::getValueforFGSet(int j,char *text,float *f)
{
if (_name[0]==0) return 0;
if (_sim_blades)
{
if (!numRotorblades()) return 0;
if (j==0)
{
sprintf(text,"/rotors/%s/cone", _name);
*f=( ((Rotorblade*)getRotorblade(0))->getFlapatPos(0)
+((Rotorblade*)getRotorblade(0))->getFlapatPos(1)
+((Rotorblade*)getRotorblade(0))->getFlapatPos(2)
+((Rotorblade*)getRotorblade(0))->getFlapatPos(3)
)/4*180/pi;
}
else
if (j==1)
{
sprintf(text,"/rotors/%s/roll", _name);
*f=( ((Rotorblade*)getRotorblade(0))->getFlapatPos(1)
-((Rotorblade*)getRotorblade(0))->getFlapatPos(3)
)/2*180/pi;
}
else
if (j==2)
{
sprintf(text,"/rotors/%s/yaw", _name);
*f=( ((Rotorblade*)getRotorblade(0))->getFlapatPos(2)
-((Rotorblade*)getRotorblade(0))->getFlapatPos(0)
)/2*180/pi;
}
else
if (j==3)
{
sprintf(text,"/rotors/%s/rpm", _name);
*f=_omega/2/pi*60;
}
else
{
int b=(j-4)/3;
if (b>=numRotorblades()) return 0;
int w=j%3;
sprintf(text,"/rotors/%s/blade%i_%s",
_name,b+1,
w==0?"pos":(w==1?"flap":"incidence"));
if (w==0) *f=((Rotorblade*)getRotorblade(b))->getPhi()*180/pi;
else if (w==1) *f=((Rotorblade*) getRotorblade(b))->getrealAlpha()*180/pi;
else *f=((Rotorblade*)getRotorblade(b))->getIncidence()*180/pi;
}
return j+1;
}
else
{
if (4!=numRotorparts()) return 0; //compile first!
if (j==0)
{
sprintf(text,"/rotors/%s/cone", _name);
*f=( ((Rotorpart*)getRotorpart(0))->getrealAlpha()
+((Rotorpart*)getRotorpart(1))->getrealAlpha()
+((Rotorpart*)getRotorpart(2))->getrealAlpha()
+((Rotorpart*)getRotorpart(3))->getrealAlpha()
)/4*180/pi;
}
else
if (j==1)
{
sprintf(text,"/rotors/%s/roll", _name);
*f=( ((Rotorpart*)getRotorpart(0))->getrealAlpha()
-((Rotorpart*)getRotorpart(2))->getrealAlpha()
)/2*180/pi*(_ccw?-1:1);
}
else
if (j==2)
{
sprintf(text,"/rotors/%s/yaw", _name);
*f=( ((Rotorpart*)getRotorpart(1))->getrealAlpha()
-((Rotorpart*)getRotorpart(3))->getrealAlpha()
)/2*180/pi;
}
else
if (j==3)
{
sprintf(text,"/rotors/%s/rpm", _name);
*f=_omega/2/pi*60;
}
else
{
int b=(j-4)/3;
if (b>=_number_of_blades) return 0;
int w=j%3;
sprintf(text,"/rotors/%s/blade%i_%s",
_name,b+1,
w==0?"pos":(w==1?"flap":"incidence"));
*f=((Rotorpart*)getRotorpart(0))->getPhi()*180/pi+360*b/_number_of_blades*(_ccw?1:-1);
if (*f>360) *f-=360;
if (*f<0) *f+=360;
int k,l;
float rk,rl,p;
p=(*f/90);
k=int(p);
l=int(p+1);
rk=l-p;
rl=1-rk;
/*
rl=Math::sqr(Math::sin(rl*pi/2));
rk=Math::sqr(Math::sin(rk*pi/2));
*/
if(w==2) {k+=2;l+=2;}
else
if(w==1) {k+=1;l+=1;}
k%=4;
l%=4;
if (w==1) *f=rk*((Rotorpart*) getRotorpart(k))->getrealAlpha()*180/pi
+rl*((Rotorpart*) getRotorpart(l))->getrealAlpha()*180/pi;
else if(w==2) *f=rk*((Rotorpart*)getRotorpart(k))->getIncidence()*180/pi
+rl*((Rotorpart*)getRotorpart(l))->getIncidence()*180/pi;
}
return j+1;
}
}
void Rotor::setEngineOn(int value)
{
_engineon=value;
}
void Rotor::setAlpha0(float f)
{
_alpha0=f;
}
void Rotor::setAlphamin(float f)
{
_alphamin=f;
}
void Rotor::setAlphamax(float f)
{
_alphamax=f;
}
void Rotor::setAlpha0factor(float f)
{
_alpha0factor=f;
}
int Rotor::numRotorparts()
{
return _rotorparts.size();
}
Rotorpart* Rotor::getRotorpart(int n)
{
return ((Rotorpart*)_rotorparts.get(n));
}
int Rotor::numRotorblades()
{
return _rotorblades.size();
}
Rotorblade* Rotor::getRotorblade(int n)
{
return ((Rotorblade*)_rotorblades.get(n));
}
void Rotor::strncpy(char *dest,const char *src,int maxlen)
{
int n=0;
while(src[n]&&n<(maxlen-1))
{
dest[n]=src[n];
n++;
}
dest[n]=0;
}
void Rotor::setNormal(float* normal)
{
int i;
float invsum,sqrsum=0;
for(i=0; i<3; i++) { sqrsum+=normal[i]*normal[i];}
if (sqrsum!=0)
invsum=1/Math::sqrt(sqrsum);
else
invsum=1;
for(i=0; i<3; i++) { _normal[i] = normal[i]*invsum; }
}
void Rotor::setForward(float* forward)
{
int i;
float invsum,sqrsum=0;
for(i=0; i<3; i++) { sqrsum+=forward[i]*forward[i];}
if (sqrsum!=0)
invsum=1/Math::sqrt(sqrsum);
else
invsum=1;
for(i=0; i<3; i++) { _forward[i] = forward[i]*invsum; }
}
void Rotor::setForceAtPitchA(float force)
{
_force_at_pitch_a=force;
}
void Rotor::setPowerAtPitch0(float value)
{
_power_at_pitch_0=value;
}
void Rotor::setPowerAtPitchB(float value)
{
_power_at_pitch_b=value;
}
void Rotor::setPitchA(float value)
{
_pitch_a=value/180*pi;
}
void Rotor::setPitchB(float value)
{
_pitch_b=value/180*pi;
}
void Rotor::setBase(float* base)
{
int i;
for(i=0; i<3; i++) _base[i] = base[i];
}
void Rotor::setMaxCyclicail(float value)
{
_maxcyclicail=value/180*pi;
}
void Rotor::setMaxCyclicele(float value)
{
_maxcyclicele=value/180*pi;
}
void Rotor::setMinCyclicail(float value)
{
_mincyclicail=value/180*pi;
}
void Rotor::setMinCyclicele(float value)
{
_mincyclicele=value/180*pi;
}
void Rotor::setMinCollective(float value)
{
_min_pitch=value/180*pi;
}
void Rotor::setMaxCollective(float value)
{
_max_pitch=value/180*pi;
}
void Rotor::setDiameter(float value)
{
_diameter=value;
}
void Rotor::setWeightPerBlade(float value)
{
_weight_per_blade=value;
}
void Rotor::setNumberOfBlades(float value)
{
_number_of_blades=int(value+.5);
}
void Rotor::setRelBladeCenter(float value)
{
_rel_blade_center=value;
}
void Rotor::setDynamic(float value)
{
_dynamic=value;
}
void Rotor::setDelta3(float value)
{
_delta3=value;
}
void Rotor::setDelta(float value)
{
_delta=value;
}
void Rotor::setTranslift(float value)
{
_translift=value;
}
void Rotor::setC2(float value)
{
_c2=value;
}
void Rotor::setStepspersecond(float steps)
{
_stepspersecond=steps;
}
void Rotor::setRPM(float value)
{
_rotor_rpm=value;
}
void Rotor::setRelLenHinge(float value)
{
_rel_len_hinge=value;
}
void Rotor::setAlphaoutput(int i, const char *text)
{
//printf("SetAlphaoutput %i [%s]\n",i,text);
strncpy(_alphaoutput[i],text,255);
}
void Rotor::setName(const char *text)
{
strncpy(_name,text,128);//128: some space needed for settings
}
void Rotor::setCcw(int ccw)
{
_ccw=ccw;
}
void Rotor::setNotorque(int value)
{
_no_torque=value;
}
void Rotor::setSimBlades(int value)
{
_sim_blades=value;
}
void Rotor::setRelLenTeeterHinge(float f)
{
_rellenteeterhinge=f;
}
void Rotor::setTeeterdamp(float f)
{
_teeterdamp=f;
}
void Rotor::setMaxteeterdamp(float f)
{
_maxteeterdamp=f;
}
void Rotor::setCollective(float lval)
{
lval = Math::clamp(lval, -1, 1);
int i;
//printf("col: %5.3f\n",lval);
for(i=0; i<_rotorparts.size(); i++) {
((Rotorpart*)_rotorparts.get(i))->setCollective(lval);
}
float col=_min_pitch+(lval+1)/2*(_max_pitch-_min_pitch);
for(i=0; i<_rotorblades.size(); i++) {
((Rotorblade*)_rotorblades.get(i))->setCollective(col);
}
}
void Rotor::setCyclicele(float lval,float rval)
{
rval = Math::clamp(rval, -1, 1);
lval = Math::clamp(lval, -1, 1);
float col=_mincyclicele+(lval+1)/2*(_maxcyclicele-_mincyclicele);
int i;
for(i=0; i<_rotorblades.size(); i++) {
//((Rotorblade*)_rotorblades.get(i))->setCyclicele(col*Math::sin(((Rotorblade*)_rotorblades.get(i))->getPhi()));
((Rotorblade*)_rotorblades.get(i))->setCyclicele(col);
}
if (_rotorparts.size()!=4) return;
//printf(" ele: %5.3f %5.3f\n",lval,rval);
((Rotorpart*)_rotorparts.get(1))->setCyclic(lval);
((Rotorpart*)_rotorparts.get(3))->setCyclic(-lval);
}
void Rotor::setCyclicail(float lval,float rval)
{
lval = Math::clamp(lval, -1, 1);
rval = Math::clamp(rval, -1, 1);
float col=_mincyclicail+(lval+1)/2*(_maxcyclicail-_mincyclicail);
int i;
for(i=0; i<_rotorblades.size(); i++) {
((Rotorblade*)_rotorblades.get(i))->setCyclicail(col);
}
if (_rotorparts.size()!=4) return;
//printf("ail: %5.3f %5.3f\n",lval,rval);
if (_ccw) lval *=-1;
((Rotorpart*)_rotorparts.get(0))->setCyclic(-lval);
((Rotorpart*)_rotorparts.get(2))->setCyclic( lval);
}
float Rotor::getGroundEffect(float* posOut)
{
/*
int i;
for(i=0; i<3; i++) posOut[i] = _base[i];
float span = _length * Math::cos(_sweep) * Math::cos(_dihedral);
span = 2*(span + Math::abs(_base[2]));
*/
return _diameter;
}
void Rotor::compile()
{
// Have we already been compiled?
if(_rotorparts.size() != 0) return;
//rotor is divided into 4 pointlike parts
printf("debug: e %f...%f a%f...%f %f...%f\n",
_mincyclicele,_maxcyclicele,
_mincyclicail,_maxcyclicail,
_min_pitch,_max_pitch);
if(!_sim_blades)
{
_dynamic=_dynamic*(1/ //inverse of the time
( (60/_rotor_rpm)/4 //for rotating 90 deg
+(60/_rotor_rpm)/(2*_number_of_blades) //+ meantime a rotorblade will pass a given point
));
float directions[5][3];//pointing forward, right, ... the 5th is ony for calculation
directions[0][0]=_forward[0];
directions[0][1]=_forward[1];
directions[0][2]=_forward[2];
int i;
printf("Rotor rotating ccw? %i\n",_ccw);
for (i=1;i<5;i++)
{
if (!_ccw)
Math::cross3(directions[i-1],_normal,directions[i]);
else
Math::cross3(_normal,directions[i-1],directions[i]);
Math::unit3(directions[i],directions[i]);
}
Math::set3(directions[4],directions[0]);
float rotorpartmass = _weight_per_blade*_number_of_blades/4*.453;//was pounds -> now kg
float speed=_rotor_rpm/60*_diameter*_rel_blade_center*pi;
float lentocenter=_diameter*_rel_blade_center*0.5;
float lentoforceattac=_diameter*_rel_len_hinge*0.5;
float zentforce=rotorpartmass*speed*speed/lentocenter;
_force_at_max_pitch=_force_at_pitch_a/_pitch_a*_max_pitch;
float maxpitchforce=_force_at_max_pitch/4*.453*9.81;//was pounds of force, now N
float torque0=0,torquemax=0;
float omega=_rotor_rpm/60*2*pi;
_omegan=omega;
float omega0=omega*Math::sqrt(1/(1-_rel_len_hinge));
//float omega0=omega*Math::sqrt((1-_rel_len_hinge));
//_delta=omega*_delta;
_delta*=maxpitchforce/(_max_pitch*omega*lentocenter*2*rotorpartmass);
float phi=Math::atan2(2*omega*_delta,omega0*omega0-omega*omega);
//float relamp=omega*omega/(2*_delta*Math::sqrt(omega0*omega0-_delta*_delta));
float relamp=omega*omega/(2*_delta*Math::sqrt(Math::sqr(omega0*omega0-omega*omega)+4*_delta*_delta*omega*omega));
if (!_no_torque)
{
torque0=_power_at_pitch_0/4*1000/omega;
torquemax=_power_at_pitch_b/4*1000/omega/_pitch_b*_max_pitch;
if(_ccw)
{
torque0*=-1;
torquemax*=-1;
}
}
printf("spd: %5.3f lentoc: %5.3f dia: %5.3f rbl: %5.3f hing: %5.3f lfa:%5.3f\n"
"zf: %5.3f mpf: %5.3f\n"
"tq: %5.3f..%5.3f d3:%5.3f\n"
"o/o0: %5.3f phi: %5.3f relamp: %5.3f delta:%5.3f\n"
,speed,lentocenter,_diameter,_rel_blade_center,_rel_len_hinge,
lentoforceattac,zentforce,maxpitchforce,
torque0,torquemax,_delta3,
omega/omega0,phi*180/pi,relamp,_delta);
Rotorpart* rps[4];
for (i=0;i<4;i++)
{
float lpos[3],lforceattac[3],lspeed[3],dirzentforce[3];
Math::mul3(lentocenter,directions[i],lpos);
Math::add3(lpos,_base,lpos);
Math::mul3(lentoforceattac,directions[i+1],lforceattac);//i+1: +90deg (gyro)!!!
Math::add3(lforceattac,_base,lforceattac);
Math::mul3(speed,directions[i+1],lspeed);
Math::mul3(1,directions[i+1],dirzentforce);
float maxcyclic=(i&1)?_maxcyclicele:_maxcyclicail;
float mincyclic=(i&1)?_mincyclicele:_mincyclicail;
Rotorpart* rp=rps[i]=newRotorpart(lpos, lforceattac, _normal,
lspeed,dirzentforce,zentforce,maxpitchforce, _max_pitch,_min_pitch,mincyclic,maxcyclic,
_delta3,rotorpartmass,_translift,_rel_len_hinge,lentocenter);
rp->setAlphaoutput(_alphaoutput[i&1?i:(_ccw?i^2:i)],0);
rp->setAlphaoutput(_alphaoutput[4+(i&1?i:(_ccw?i^2:i))],1+(i>1));
_rotorparts.add(rp);
rp->setTorque(torquemax,torque0);
rp->setRelamp(relamp);
}
for (i=0;i<4;i++)
{
rps[i]->setlastnextrp(rps[(i-1)%4],rps[(i+1)%4],rps[(i+2)%4]);
}
}
else
{
float directions[5][3];//pointing forward, right, ... the 5th is ony for calculation
directions[0][0]=_forward[0];
directions[0][1]=_forward[1];
directions[0][2]=_forward[2];
int i;
printf("Rotor rotating ccw? %i\n",_ccw);
for (i=1;i<5;i++)
{
//if (!_ccw)
Math::cross3(directions[i-1],_normal,directions[i]);
//else
// Math::cross3(_normal,directions[i-1],directions[i]);
Math::unit3(directions[i],directions[i]);
}
Math::set3(directions[4],directions[0]);
float speed=_rotor_rpm/60*_diameter*_rel_blade_center*pi;
float lentocenter=_diameter*_rel_blade_center*0.5;
float lentoforceattac=_diameter*_rel_len_hinge*0.5;
float zentforce=_weight_per_blade*.453*speed*speed/lentocenter;
_force_at_max_pitch=_force_at_pitch_a/_pitch_a*_max_pitch;
float maxpitchforce=_force_at_max_pitch/_number_of_blades*.453*9.81;//was pounds of force, now N
float torque0=0,torquemax=0;
float omega=_rotor_rpm/60*2*pi;
_omegan=omega;
float omega0=omega*Math::sqrt(1/(1-_rel_len_hinge));
//float omega0=omega*Math::sqrt(1-_rel_len_hinge);
//_delta=omega*_delta;
_delta*=maxpitchforce/(_max_pitch*omega*lentocenter*2*_weight_per_blade*.453);
float phi=Math::atan2(2*omega*_delta,omega0*omega0-omega*omega);
float phi2=Math::abs(omega0-omega)<.000000001?pi/2:Math::atan(2*omega*_delta/(omega0*omega0-omega*omega));
float relamp=omega*omega/(2*_delta*Math::sqrt(Math::sqr(omega0*omega0-omega*omega)+4*_delta*_delta*omega*omega));
if (!_no_torque)
{
torque0=_power_at_pitch_0/_number_of_blades*1000/omega;
torquemax=_power_at_pitch_b/_number_of_blades*1000/omega/_pitch_b*_max_pitch;
if(_ccw)
{
torque0*=-1;
torquemax*=-1;
}
}
printf("spd: %5.3f lentoc: %5.3f dia: %5.3f rbl: %5.3f hing: %5.3f lfa:%5.3f\n"
"zf: %5.3f mpf: %5.3f\n"
"tq: %5.3f..%5.3f d3:%5.3f\n"
"o/o0: %5.3f phi: %5.3f relamp:%5.3f delta:%5.3f\n"
,speed,lentocenter,_diameter,_rel_blade_center,_rel_len_hinge,
lentoforceattac,zentforce,maxpitchforce,
torque0,torquemax,_delta3,
omega/omega0,float(phi*180/pi),relamp,_delta);
float lspeed[3],dirzentforce[3];
float f=(!_ccw)?1:-1;
//Math::mul3(f*speed,directions[1],lspeed);
Math::mul3(f,directions[1],dirzentforce);
for (i=0;i<_number_of_blades;i++)
{
Rotorblade* rb=newRotorblade(_base,_normal,directions[0],directions[1],
lentoforceattac,_rel_len_hinge,
dirzentforce,zentforce,maxpitchforce, _max_pitch,
_delta3,_weight_per_blade*.453,_translift,2*pi/_number_of_blades*i,
omega,lentocenter,/*f* */speed);
//rp->setAlphaoutput(_alphaoutput[i&1?i:(_ccw?i^2:i)],0);
//rp->setAlphaoutput(_alphaoutput[4+(i&1?i:(_ccw?i^2:i))],1+(i>1));
_rotorblades.add(rb);
rb->setTorque(torquemax,torque0);
rb->setDeltaPhi(pi/2.-phi);
rb->setDelta(_delta);
rb->calcFrontRight();
}
/*
for (i=0;i<4;i++)
{
rps[i]->setlastnextrp(rps[(i-1)%4],rps[(i+1)%4],rps[(i+2)%4]);
}
*/
}
}
Rotorblade* Rotor::newRotorblade(float* pos, float *normal, float *front, float *right,
float lforceattac,float rellenhinge,
float *dirzentforce, float zentforce,float maxpitchforce,float maxpitch,
float delta3,float mass,float translift,float phi,float omega,float len,float speed)
{
Rotorblade *r = new Rotorblade();
r->setPosition(pos);
r->setNormal(normal);
r->setFront(front);
r->setRight(right);
r->setMaxPitchForce(maxpitchforce);
r->setZentipetalForce(zentforce);
r->setAlpha0(_alpha0);
r->setAlphamin(_alphamin);
r->setAlphamax(_alphamax);
r->setAlpha0factor(_alpha0factor);
r->setSpeed(speed);
r->setDirectionofZentipetalforce(dirzentforce);
r->setMaxpitch(maxpitch);
r->setDelta3(delta3);
r->setDynamic(_dynamic);
r->setTranslift(_translift);
r->setC2(_c2);
r->setStepspersecond(_stepspersecond);
r->setWeight(mass);
r->setOmegaN(omega);
r->setPhi(phi);
r->setLforceattac(lforceattac);
r->setLen(len);
r->setLenHinge(rellenhinge);
r->setRelLenTeeterHinge(_rellenteeterhinge);
r->setTeeterdamp(_teeterdamp);
r->setMaxteeterdamp(_maxteeterdamp);
/*
#define a(x) x[0],x[1],x[2]
printf("newrp: pos(%5.3f %5.3f %5.3f) pfa (%5.3f %5.3f %5.3f)\n"
" nor(%5.3f %5.3f %5.3f) spd (%5.3f %5.3f %5.3f)\n"
" dzf(%5.3f %5.3f %5.3f) zf (%5.3f) mpf (%5.3f)\n"
" pit (%5.3f..%5.3f) mcy (%5.3f..%5.3f) d3 (%5.3f)\n"
,a(pos),a(posforceattac),a(normal),
a(speed),a(dirzentforce),zentforce,maxpitchforce,minpitch,maxpitch,mincyclic,maxcyclic,
delta3);
#undef a
*/
return r;
}
Rotorpart* Rotor::newRotorpart(float* pos, float *posforceattac, float *normal,
float* speed,float *dirzentforce, float zentforce,float maxpitchforce,
float maxpitch, float minpitch, float mincyclic,float maxcyclic,
float delta3,float mass,float translift,float rellenhinge,float len)
{
Rotorpart *r = new Rotorpart();
r->setPosition(pos);
r->setNormal(normal);
r->setMaxPitchForce(maxpitchforce);
r->setZentipetalForce(zentforce);
r->setPositionForceAttac(posforceattac);
r->setSpeed(speed);
r->setDirectionofZentipetalforce(dirzentforce);
r->setMaxpitch(maxpitch);
r->setMinpitch(minpitch);
r->setMaxcyclic(maxcyclic);
r->setMincyclic(mincyclic);
r->setDelta3(delta3);
r->setDynamic(_dynamic);
r->setTranslift(_translift);
r->setC2(_c2);
r->setWeight(mass);
r->setRelLenHinge(rellenhinge);
r->setOmegaN(_omegan);
r->setAlpha0(_alpha0);
r->setAlphamin(_alphamin);
r->setAlphamax(_alphamax);
r->setAlpha0factor(_alpha0factor);
r->setLen(len);
#define a(x) x[0],x[1],x[2]
printf("newrp: pos(%5.3f %5.3f %5.3f) pfa (%5.3f %5.3f %5.3f)\n"
" nor(%5.3f %5.3f %5.3f) spd (%5.3f %5.3f %5.3f)\n"
" dzf(%5.3f %5.3f %5.3f) zf (%5.3f) mpf (%5.3f)\n"
" pit (%5.3f..%5.3f) mcy (%5.3f..%5.3f) d3 (%5.3f)\n"
,a(pos),a(posforceattac),a(normal),
a(speed),a(dirzentforce),zentforce,maxpitchforce,minpitch,maxpitch,mincyclic,maxcyclic,
delta3);
#undef a
return r;
}
void Rotor::interp(float* v1, float* v2, float frac, float* out)
{
out[0] = v1[0] + frac*(v2[0]-v1[0]);
out[1] = v1[1] + frac*(v2[1]-v1[1]);
out[2] = v1[2] + frac*(v2[2]-v1[2]);
}
}; // namespace yasim

146
src/FDM/YASim/Rotor.hpp Normal file
View file

@ -0,0 +1,146 @@
#ifndef _ROTOR_HPP
#define _ROTOR_HPP
#include "Vector.hpp"
#include "Rotorpart.hpp"
#include "Rotorblade.hpp"
namespace yasim {
class Surface;
class Rotorpart;
class Rotor {
public:
Rotor();
~Rotor();
// Rotor geometry:
void setNormal(float* normal); //the normal vector (direction of rotormast, pointing up)
void setForward(float* forward); //the normal vector pointing forward (for ele and ail)
//void setMaxPitchForce(float force);
void setForceAtPitchA(float force);
void setPowerAtPitch0(float value);
void setPowerAtPitchB(float value);
void setNotorque(int value);
void setPitchA(float value);
void setPitchB(float value);
void setMinCyclicail(float value);
void setMinCyclicele(float value);
void setMaxCyclicail(float value);
void setMaxCyclicele(float value);
void setMaxCollective(float value);
void setMinCollective(float value);
void setDiameter(float value);
void setWeightPerBlade(float value);
void setNumberOfBlades(float value);
void setRelBladeCenter(float value);
void setDelta3(float value);
void setDelta(float value);
void setDynamic(float value);
void setTranslift(float value);
void setC2(float value);
void setStepspersecond(float steps);
void setRPM(float value);
void setRelLenHinge(float value);
void setBase(float* base); // in local coordinates
void setCyclicail(float lval,float rval);
void setCyclicele(float lval,float rval);
void setCollective(float lval);
void setAlphaoutput(int i, const char *text);
void setCcw(int ccw);
void setSimBlades(int value);
void setEngineOn(int value);
int getValueforFGSet(int j,char *b,float *f);
void setName(const char *text);
void inititeration(float dt);
void compile();
void getTip(float* tip);
// Ground effect information, stil missing
float getGroundEffect(float* posOut);
// Query the list of Rotorpart objects
int numRotorparts();
Rotorpart* getRotorpart(int n);
// Query the list of Rotorblade objects
int numRotorblades();
Rotorblade* getRotorblade(int n);
void setAlpha0(float f);
void setAlphamin(float f);
void setAlphamax(float f);
void setTeeterdamp(float f);
void setMaxteeterdamp(float f);
void setRelLenTeeterHinge(float value);
void setAlpha0factor(float f);
private:
void strncpy(char *dest,const char *src,int maxlen);
void interp(float* v1, float* v2, float frac, float* out);
Rotorpart* newRotorpart(float* pos, float *posforceattac, float *normal,
float* speed,float *dirzentforce, float zentforce,float maxpitchforce,float maxpitch, float minpitch, float mincyclic,float maxcyclic,
float delta3,float mass,float translift,float rellenhinge,float len);
Rotorblade* newRotorblade(
float* pos, float *normal,float *front, float *right,
float lforceattac,float relenhinge,
float *dirzentforce, float zentforce,float maxpitchforce,float maxpitch,
float delta3,float mass,float translift,float phi,float omega,float len,float speed);
Vector _rotorparts;
Vector _rotorblades;
float _base[3];
float _normal[3];//the normal vector (direction of rotormast, pointing up)
float _forward[3];
float _diameter;
int _number_of_blades;
float _weight_per_blade;
float _rel_blade_center;
float _min_pitch;
float _max_pitch;
float _force_at_max_pitch;
float _force_at_pitch_a;
float _pitch_a;
float _power_at_pitch_0;
float _power_at_pitch_b;
int _no_torque;
int _sim_blades;
float _pitch_b;
float _rotor_rpm;
float _rel_len_hinge;
float _maxcyclicail;
float _maxcyclicele;
float _mincyclicail;
float _mincyclicele;
float _delta3;
float _delta;
float _dynamic;
float _translift;
float _c2;
float _stepspersecond;
char _alphaoutput[8][256];
char _name[256];
int _ccw;
int _engineon;
float _omega,_omegan,_omegarel;
float _alphamin,_alphamax,_alpha0,_alpha0factor;
float _teeterdamp,_maxteeterdamp;
float _rellenteeterhinge;
};
}; // namespace yasim
#endif // _ROTOR_HPP

View file

@ -0,0 +1,542 @@
#include "Math.hpp"
#include "Rotorblade.hpp"
#include <stdio.h>
//#include <string.h>
//#include <Main/fg_props.hxx>
namespace yasim {
const float pi=3.14159;
Rotorblade::Rotorblade()
{
/*
_orient[0] = 1; _orient[1] = 0; _orient[2] = 0;
_orient[3] = 0; _orient[4] = 1; _orient[5] = 0;
_orient[6] = 0; _orient[7] = 0; _orient[8] = 1;
*/
_collective=0;
_dt=0;
_speed=0;
#define set3(x,a,b,c) x[0]=a;x[1]=b;x[2]=c;
set3 (_directionofzentipetalforce,1,0,0);
#undef set3
_zentipetalforce=1;
_maxpitch=.02;
_maxpitchforce=10;
_delta3=0.5;
_cyclicail=0;
_cyclicele=0;
_collective=0;
_flapatpos[0]=_flapatpos[1]=_flapatpos[2]=_flapatpos[3]=0;
_flapatpos[0]=.1;
_flapatpos[1]=.2;
_flapatpos[2]=.3;
_flapatpos[3]=.4;
_len=1;
_lforceattac=1;
_calcforcesdone=false;
_phi=0;
_omega=0;
_omegan=1;
_mass=10;
_alpha=0;
_alphaoutputbuf[0][0]=0;
_alphaoutputbuf[1][0]=0;
_alpha2type=0;
_alphaalt=0;
_alphaomega=0;
_lastrp=0;
_nextrp=0;
_oppositerp=0;
_translift=0;
_dynamic=100;
_c2=1;
_stepspersecond=240;
_torque_max_force=0;
_torque_no_force=0;
_deltaphi=0;
_alphamin=-.1;
_alphamax= .1;
_alpha0=-.05;
_alpha0factor=1;
_rellenhinge=0;
_teeter=0;
_ddtteeter=0;
_teeterdamp=0.00001;
_maxteeterdamp=0;
_rellenteeterhinge=0.01;
}
void Rotorblade::inititeration(float dt,float *rot)
{
//printf("init %5.3f",dt*1000);
_dt=dt;
_calcforcesdone=false;
float a=Math::dot3(rot,_normal);
_phi+=a;
_phi+=_omega*dt;
while (_phi>(2*pi)) _phi-=2*pi;
while (_phi<(0 )) _phi+=2*pi;
//jetzt noch Drehung des Rumpfes in gleiche Richtung wie alpha bestimmen
//und zu _alphaalt hinzuf<75>gen
//alpha gibt drehung um normal cross dirofzentf an
float dir[3];
Math::cross3(_lright,_normal,dir);
a=-Math::dot3(rot,dir);
float alphaneu= _alpha+a;
// alphaneu= Math::clamp(alphaneu,-.5,.5);
//_alphaomega=(alphaneu-_alphaalt)/_dt;//now calculated in calcforces
_alphaalt = alphaneu;
calcFrontRight();
}
void Rotorblade::setTorque(float torque_max_force,float torque_no_force)
{
_torque_max_force=torque_max_force;
_torque_no_force=torque_no_force;
}
void Rotorblade::setAlpha0(float f)
{
_alpha0=f;
}
void Rotorblade::setAlphamin(float f)
{
_alphamin=f;
}
void Rotorblade::setAlphamax(float f)
{
_alphamax=f;
}
void Rotorblade::setAlpha0factor(float f)
{
_alpha0factor=f;
}
void Rotorblade::setWeight(float value)
{
_mass=value;
}
float Rotorblade::getWeight(void)
{
return(_mass/.453); //_mass is in kg, returns pounds
}
void Rotorblade::setPosition(float* p)
{
int i;
for(i=0; i<3; i++) _pos[i] = p[i];
}
void Rotorblade::calcFrontRight()
{
float tmpcf[3],tmpsr[3],tmpsf[3],tmpcr[3];
Math::mul3(Math::cos(_phi),_right,tmpcr);
Math::mul3(Math::cos(_phi),_front,tmpcf);
Math::mul3(Math::sin(_phi),_right,tmpsr);
Math::mul3(Math::sin(_phi),_front,tmpsf);
Math::add3(tmpcf,tmpsr,_lfront);
Math::sub3(tmpcr,tmpsf,_lright);
}
void Rotorblade::getPosition(float* out)
{
float dir[3];
Math::mul3(_len,_lfront,dir);
Math::add3(_pos,dir,out);
}
void Rotorblade::setPositionForceAttac(float* p)
{
int i;
for(i=0; i<3; i++) _posforceattac[i] = p[i];
}
void Rotorblade::getPositionForceAttac(float* out)
{
float dir[3];
Math::mul3(_len*_rellenhinge*2,_lfront,dir);
Math::add3(_pos,dir,out);
}
void Rotorblade::setSpeed(float p)
{
_speed = p;
}
void Rotorblade::setDirectionofZentipetalforce(float* p)
{
int i;
for(i=0; i<3; i++) _directionofzentipetalforce[i] = p[i];
}
void Rotorblade::setZentipetalForce(float f)
{
_zentipetalforce=f;
}
void Rotorblade::setMaxpitch(float f)
{
_maxpitch=f;
}
void Rotorblade::setMaxPitchForce(float f)
{
_maxpitchforce=f;
}
void Rotorblade::setDelta(float f)
{
_delta=f;
}
void Rotorblade::setDeltaPhi(float f)
{
_deltaphi=f;
}
void Rotorblade::setDelta3(float f)
{
_delta3=f;
}
void Rotorblade::setTranslift(float f)
{
_translift=f;
}
void Rotorblade::setDynamic(float f)
{
_dynamic=f;
}
void Rotorblade::setC2(float f)
{
_c2=f;
}
void Rotorblade::setStepspersecond(float steps)
{
_stepspersecond=steps;
}
void Rotorblade::setRelLenTeeterHinge(float f)
{
_rellenteeterhinge=f;
}
void Rotorblade::setTeeterdamp(float f)
{
_teeterdamp=f;
}
void Rotorblade::setMaxteeterdamp(float f)
{
_maxteeterdamp=f;
}
float Rotorblade::getAlpha(int i)
{
i=i&1;
if ((i==0)&&(_first))
return _alpha*180/3.14;//in Grad = 1
else
if(i==0)
return _showa;
else
return _showb;
}
float Rotorblade::getrealAlpha(void)
{
return _alpha;
}
void Rotorblade::setAlphaoutput(char *text,int i)
{
printf("setAlphaoutput Rotorblade [%s] typ %i\n",text,i);
strncpy(_alphaoutputbuf[i>0],text,255);
if (i>0) _alpha2type=i;
}
char* Rotorblade::getAlphaoutput(int i)
{
#define wstep 30
if ((i==0)&&(_first))
{
int winkel=(int)(.5+_phi/pi*180/wstep);
winkel%=(360/wstep);
sprintf(_alphaoutputbuf[0],"/blades/pos%03i",winkel*wstep);
}
else
{
int winkel=(int)(.5+_phi/pi*180/wstep);
winkel%=(360/wstep);
if (i==0)
sprintf(_alphaoutputbuf[i&1],"/blades/showa_%i_%03i",i,winkel*wstep);
else
if (_first)
sprintf(_alphaoutputbuf[i&1],"/blades/damp_%03i",winkel*wstep);
else
sprintf(_alphaoutputbuf[i&1],"/blades/showb_%i_%03i",i,winkel*wstep);
}
return _alphaoutputbuf[i&1];
#undef wstep
}
void Rotorblade::setNormal(float* p)
{
int i;
for(i=0; i<3; i++) _normal[i] = p[i];
}
void Rotorblade::setFront(float* p)
{
int i;
for(i=0; i<3; i++) _lfront[i]=_front[i] = p[i];
printf("front: %5.3f %5.3f %5.3f\n",p[0],p[1],p[2]);
}
void Rotorblade::setRight(float* p)
{
int i;
for(i=0; i<3; i++) _lright[i]=_right[i] = p[i];
printf("right: %5.3f %5.3f %5.3f\n",p[0],p[1],p[2]);
}
void Rotorblade::getNormal(float* out)
{
int i;
for(i=0; i<3; i++) out[i] = _normal[i];
}
void Rotorblade::setCollective(float pos)
{
_collective = pos;
}
void Rotorblade::setCyclicele(float pos)
{
_cyclicele = -pos;
}
void Rotorblade::setCyclicail(float pos)
{
_cyclicail = -pos;
}
void Rotorblade::setPhi(float value)
{
_phi=value;
if(value==0) _first=1; else _first =0;
}
float Rotorblade::getPhi()
{
return(_phi);
}
void Rotorblade::setOmega(float value)
{
_omega=value;
}
void Rotorblade::setOmegaN(float value)
{
_omegan=value;
}
void Rotorblade::setLen(float value)
{
_len=value;
}
void Rotorblade::setLenHinge(float value)
{
_rellenhinge=value;
}
void Rotorblade::setLforceattac(float value)
{
_lforceattac=value;
}
float Rotorblade::getIncidence()
{
return(_incidence);
}
float Rotorblade::getFlapatPos(int k)
{
return _flapatpos[k%4];
}
/*
void Rotorblade::setlastnextrp(Rotorblade*lastrp,Rotorblade*nextrp,Rotorblade *oppositerp)
{
_lastrp=lastrp;
_nextrp=nextrp;
_oppositerp=oppositerp;
}
*/
void Rotorblade::strncpy(char *dest,const char *src,int maxlen)
{
int n=0;
while(src[n]&&n<(maxlen-1))
{
dest[n]=src[n];
n++;
}
dest[n]=0;
}
// Calculate the aerodynamic force given a wind vector v (in the
// aircraft's "local" coordinates) and an air density rho. Returns a
// torque about the Y axis, too.
void Rotorblade::calcForce(float* v, float rho, float* out, float* torque)
{
//printf("cf: alt:%g aw:%g ",_alphaalt,_alphaomega);
//if (_first) printf("p: %5.3f e:%5.3f a:%5.3f p:%5.3f",_collective,_cyclicele,_cyclicail,_phi);
if (_calcforcesdone)
{
int i;
for(i=0; i<3; i++) {
torque[i] = _oldt[i];
out[i] = _oldf[i];
}
return;
}
{
int k;
if (_omega>0)
for (k=1;k<=4;k++)
{
if ((_phi<=(float(k)*pi/2))&&((_phi+_omega*_dt)>=(float(k)*pi/2)))
{
_flapatpos[k%4]=_alphaalt;
}
}
else
for (k=0;k<4;k++)
{
if ((_phi>=(float(k)*pi/2))&&((_phi+_omega*_dt)<=(float(k)*pi/2)))
{
_flapatpos[k%4]=_alphaalt;
}
}
}
float ldt;
int steps=int(_dt*_stepspersecond);
if (steps<=0) steps=1;
ldt=_dt/steps;
float lphi;
float f[3];
f[0]=f[1]=f[2]=0;
float t[3];
t[0]=t[1]=t[2]=0;
//_zentipetalforce=_mass*_omega*_omega*_len*(_rellenhinge+(1-_rellenhinge)*Math::cos(_alphalt));
//_zentipetalforce=_mass*_omega*_omega*_len/(_rellenhinge+(1-_rellenhinge)*Math::cos(_alphalt)); //incl teeter
_speed=_omega*_len*(1-_rellenhinge+_rellenhinge*Math::cos(_alphaalt));
float vrel[3],vreldir[3],speed[3];
Math::mul3(_speed,_lright,speed);
Math::sub3(speed,v,vrel);
Math::unit3(vrel,vreldir);//direction of blade-movement rel. to air
float delta=Math::asin(Math::dot3(_normal,vreldir));//Angle of blade which would produce no vertical force
float lalphaalt=_alphaalt;
float lalpha=_alpha;
float lalphaomega=_alphaomega;
if((_phi>0.01)&&(_first)&&(_phi<0.02))
{
printf("mass:%5.3f delta: %5.3f _dt: %5.7f ldt: %5.7f st:%i w: %5.3f w0: %5.3f\n",
_mass,_delta,_dt,ldt,steps,_omega,Math::sqrt(_zentipetalforce*(1-_rellenhinge)/_len/_mass));
}
for (int step=0;step<steps;step++)
{
lphi=_phi+(step-steps/2.)*ldt*_omega;
//_zentipetalforce=_mass*_omega*_omega*_len/(_rellenhinge+(1-_rellenhinge)*Math::cos(lalphaalt)); //incl teeter
_zentipetalforce=_mass*_omega*_omega*_len;
//printf("[%5.3f]",col);
float beta=-_cyclicele*Math::sin(lphi-0*_deltaphi)+_cyclicail*Math::cos(lphi-0*_deltaphi)+_collective-_delta3*lalphaalt;
if (step==(steps/2)) _incidence=beta;
//printf("be:%5.3f de:%5.3f ",beta,delta);
//printf("\nvd: %5.3f %5.3f %5.3f ",vreldir[0],vreldir[1],vreldir[2]);
//printf("lr: %5.3f %5.3f %5.3f\n",_lright[0],_lright[1],_lright[2]);
//printf("no: %5.3f %5.3f %5.3f ",_normal[0],_normal[1],_normal[2]);
//printf("sp: %5.3f %5.3f %5.3f\n ",speed[0],speed[1],speed[2]);
//printf("vr: %5.3f %5.3f %5.3f ",vrel[0],vrel[1],vrel[2]);
//printf("v : %5.3f %5.3f %5.3f ",v[0],v[1],v[2]);
//float c=_maxpitchforce/(_maxpitch*_zentipetalforce);
float zforcealph=(beta-delta)/_maxpitch*_maxpitchforce*_omega/_omegan;
float zforcezent=(1-_rellenhinge)*Math::sin(lalphaalt)*_zentipetalforce;
float zforcelowspeed=(_omegan-_omega)/_omegan*(lalpha-_alpha0)*_mass*_alpha0factor;
float zf=zforcealph-zforcezent-zforcelowspeed;
_showa=zforcealph;
_showb=-zforcezent;
float vv=Math::sin(lalphaomega)*_len;
zf-=vv*_delta*2*_mass;
vv+=zf/_mass*ldt;
if ((_omega*10)<_omegan)
vv*=.5+5*(_omega/_omegan);//reduce if omega is low
//if (_first) _showb=vv*_delta*2*_mass;//for debugging output
lalpha=Math::asin(Math::sin(lalphaalt)+(vv/_len)*ldt);
lalpha=Math::clamp(lalpha,_alphamin,_alphamax);
float vblade=Math::abs(Math::dot3(_lfront,v));
float tliftfactor=Math::sqrt(1+vblade*_translift);
float xforce = Math::cos(lalpha)*_zentipetalforce;//
float zforce = tliftfactor*Math::sin(lalpha)*_zentipetalforce;//
float thetorque = _torque_no_force+_torque_max_force*Math::abs(zforce/_maxpitchforce);
/*
printf("speed: %5.3f %5.3f %5.3f vwind: %5.3f %5.3f %5.3f sin %5.3f\n",
_speed[0],_speed[1],_speed[2],
v[0],v[1],v[2],Math::sin(alpha));
*/
int i;
for(i=0; i<3; i++) {
t[i] += _normal[i]*thetorque;
f[i] += _normal[i]*zforce+_lfront[i]*xforce;
}
lalphaomega=(lalpha-lalphaalt)/ldt;
lalphaalt=lalpha;
/*
_ddtteeter+=_len*_omega/(1-_rellenhinge)*lalphaomega*ldt;
float teeterforce=-_zentipetalforce*Math::sin(_teeter)*_c2;
teeterforce-=Math::clamp(_ddtteeter*_teeterdamp,-_maxteeterdamp,_maxteeterdamp);
_ddtteeter+=teeterforce/_mass;
_teeter+=_ddtteeter*ldt;
if (_first) _showb=_teeter*180/pi;
*/
}
_alpha=lalpha;
_alphaomega=lalphaomega;
/*
if (_first) printf("aneu: %5.3f zfa:%5.3f vv:%g ao:%.3g xf:%.3g zf:%.3g \r",_alpha,zforcealph,vv,_alpha
,xforce,zforce);
*/
int i;
for(i=0; i<3; i++) {
torque[i] = _oldt[i]=t[i]/steps;
out[i] = _oldf[i]=f[i]/steps;
}
_calcforcesdone=true;
//printf("alpha: %5.3f force: %5.3f %5.3f %5.3f %5.3f %5.3f\n",alpha*180/3.14,xforce,zforce,out[0],out[1],out[2]);
}
}; // namespace yasim

View file

@ -0,0 +1,146 @@
#ifndef _ROTORBLADE_HPP
#define _ROTORBLADE_HPP
namespace yasim {
class Rotorblade
{
public:
Rotorblade();
// Position of this surface in local coords
void setPosition(float* p);
void getPosition(float* out);
float getPhi();
void setPhi(float value);
void setPositionForceAttac(float* p);
void getPositionForceAttac(float* out);
void setNormal(float* p);
void setFront(float* p);
void setRight(float* p);
void getNormal(float* out);
void setMaxPitchForce(float force);
void setCollective(float pos);
void setCyclicele(float pos);
void setCyclicail(float pos);
void setOmega(float value);
void setOmegaN(float value);
void setLen(float value);
void setLenHinge(float value);
void setLforceattac(float value);
void setSpeed(float p);
void setDirectionofZentipetalforce(float* p);
void setZentipetalForce(float f);
void setMaxpitch(float f);
void setDelta3(float f);
void setDelta(float f);
void setDeltaPhi(float f);
void setDynamic(float f);
void setTranslift(float f);
void setC2(float f);
void setStepspersecond(float steps);
void setZentForce(float f);
float getAlpha(int i);
float getrealAlpha(void);
char* getAlphaoutput(int i);
void setAlphaoutput(char *text,int i);
void inititeration(float dt,float *rot);
float getWeight(void);
void setWeight(float value);
float getFlapatPos(int k);
// local -> Rotorblade coords
//void setOrientation(float* o);
void calcForce(float* v, float rho, float* forceOut, float* torqueOut);
void setlastnextrp(Rotorblade*lastrp,Rotorblade*nextrp,Rotorblade *oppositerp);
void setTorque(float torque_max_force,float torque_no_force);
void calcFrontRight();
float getIncidence();
void setAlpha0(float f);
void setAlphamin(float f);
void setAlphamax(float f);
void setAlpha0factor(float f);
void setTeeterdamp(float f);
void setMaxteeterdamp(float f);
void setRelLenTeeterHinge(float value);
private:
void strncpy(char *dest,const char *src,int maxlen);
Rotorblade *_lastrp,*_nextrp,*_oppositerp;
float _dt;
float _phi,_omega,_omegan;
float _delta;
float _deltaphi;
int _first;
float _len;
float _lforceattac;
float _pos[3]; // position in local coords
float _posforceattac[3]; // position in local coords
float _normal[3]; //direcetion of the rotation axis
float _front[3],_right[3];
float _lright[3],_lfront[3];
float _torque_max_force;
float _torque_no_force;
float _speed;
float _directionofzentipetalforce[3];
float _zentipetalforce;
float _maxpitch;
float _maxpitchforce;
float _cyclicele;
float _cyclicail;
float _collective;
float _delta3;
float _dynamic;
float _flapatpos[4];//flapangle at 0, 90, 180 and 270 degree, for graphics
float _translift;
float _c2;
float _mass;
float _alpha;
float _alphaalt;
float _alphaomega;
float _rellenhinge;
float _incidence;
float _alphamin,_alphamax,_alpha0,_alpha0factor;
float _stepspersecond;
float _teeter,_ddtteeter;
float _teeterdamp,_maxteeterdamp;
float _rellenteeterhinge;
char _alphaoutputbuf[2][256];
int _alpha2type;
//float _orient[9]; // local->surface orthonormal matrix
bool _calcforcesdone;
float _oldt[3],_oldf[3];
float _showa,_showb;
};
}; // namespace yasim
#endif // _ROTORBLADE_HPP

399
src/FDM/YASim/Rotorpart.cpp Normal file
View file

@ -0,0 +1,399 @@
#include "Math.hpp"
#include "Rotorpart.hpp"
#include <stdio.h>
//#include <string.h>
//#include <Main/fg_props.hxx>
namespace yasim {
const float pi=3.14159;
Rotorpart::Rotorpart()
{
_cyclic=0;
_collective=0;
_rellenhinge=0;
_dt=0;
#define set3(x,a,b,c) x[0]=a;x[1]=b;x[2]=c;
set3 (_speed,1,0,0);
set3 (_directionofzentipetalforce,1,0,0);
#undef set3
_zentipetalforce=1;
_maxpitch=.02;
_minpitch=0;
_maxpitchforce=10;
_maxcyclic=0.02;
_mincyclic=-0.02;
_delta3=0.5;
_cyclic=0;
_collective=0;
_relamp=1;
_mass=10;
_incidence = 0;
_alpha=0;
_alphamin=-.1;
_alphamax= .1;
_alpha0=-.05;
_alpha0factor=1;
_alphaoutputbuf[0][0]=0;
_alphaoutputbuf[1][0]=0;
_alpha2type=0;
_alphaalt=0;
_lastrp=0;
_nextrp=0;
_oppositerp=0;
_translift=0;
_dynamic=100;
_c2=0;
_torque_max_force=0;
_torque_no_force=0;
_omega=0;
_omegan=1;
_phi=0;
_len=1;
}
void Rotorpart::inititeration(float dt,float *rot)
{
//printf("init %5.3f",dt*1000);
_dt=dt;
_phi+=_omega*dt;
while (_phi>(2*pi)) _phi-=2*pi;
while (_phi<(0 )) _phi+=2*pi;
//_alphaalt=_alpha;
//a=skalarprdukt _normal mit rot ergibt drehung um Normale
//alphaalt=Math::cos(a)*alpha+.5*(Math::sin(a)*alphanachbarnlast-Math::sin(a)*alphanachbanext)
float a=Math::dot3(rot,_normal);
if(a>0)
_alphaalt=_alpha*Math::cos(a)
+_nextrp->getrealAlpha()*Math::sin(a);
else
_alphaalt=_alpha*Math::cos(a)
+_lastrp->getrealAlpha()*Math::sin(-a);
//jetzt noch Drehung des Rumpfes in gleiche Richtung wie alpha bestimmen
//und zu _alphaalt hinzuf<75>gen
//alpha gibt drehung um normal cross dirofzentf an
float dir[3];
Math::cross3(_directionofzentipetalforce,_normal,dir);
a=Math::dot3(rot,dir);
_alphaalt -= a;
_alphaalt= Math::clamp(_alphaalt,_alphamin,_alphamax);
}
void Rotorpart::setTorque(float torque_max_force,float torque_no_force)
{
_torque_max_force=torque_max_force;
_torque_no_force=torque_no_force;
}
void Rotorpart::setWeight(float value)
{
_mass=value;
}
float Rotorpart::getWeight(void)
{
return(_mass/.453); //_mass is in kg, returns pounds
}
void Rotorpart::setPosition(float* p)
{
int i;
for(i=0; i<3; i++) _pos[i] = p[i];
}
float Rotorpart::getIncidence()
{
return(_incidence);
}
void Rotorpart::getPosition(float* out)
{
int i;
for(i=0; i<3; i++) out[i] = _pos[i];
}
void Rotorpart::setPositionForceAttac(float* p)
{
int i;
for(i=0; i<3; i++) _posforceattac[i] = p[i];
}
void Rotorpart::getPositionForceAttac(float* out)
{
int i;
for(i=0; i<3; i++) out[i] = _posforceattac[i];
//printf("posforce: %5.3f %5.3f %5.3f ",out[0],out[1],out[2]);
}
void Rotorpart::setSpeed(float* p)
{
int i;
for(i=0; i<3; i++) _speed[i] = p[i];
}
void Rotorpart::setDirectionofZentipetalforce(float* p)
{
int i;
for(i=0; i<3; i++) _directionofzentipetalforce[i] = p[i];
}
void Rotorpart::setOmega(float value)
{
_omega=value;
}
void Rotorpart::setOmegaN(float value)
{
_omegan=value;
}
void Rotorpart::setZentipetalForce(float f)
{
_zentipetalforce=f;
}
void Rotorpart::setMinpitch(float f)
{
_minpitch=f;
}
void Rotorpart::setMaxpitch(float f)
{
_maxpitch=f;
}
void Rotorpart::setMaxPitchForce(float f)
{
_maxpitchforce=f;
}
void Rotorpart::setMaxcyclic(float f)
{
_maxcyclic=f;
}
void Rotorpart::setMincyclic(float f)
{
_mincyclic=f;
}
void Rotorpart::setDelta3(float f)
{
_delta3=f;
}
void Rotorpart::setRelamp(float f)
{
_relamp=f;
}
void Rotorpart::setTranslift(float f)
{
_translift=f;
}
void Rotorpart::setDynamic(float f)
{
_dynamic=f;
}
void Rotorpart::setRelLenHinge(float f)
{
_rellenhinge=f;
}
void Rotorpart::setC2(float f)
{
_c2=f;
}
void Rotorpart::setAlpha0(float f)
{
_alpha0=f;
}
void Rotorpart::setAlphamin(float f)
{
_alphamin=f;
}
void Rotorpart::setAlphamax(float f)
{
_alphamax=f;
}
void Rotorpart::setAlpha0factor(float f)
{
_alpha0factor=f;
}
float Rotorpart::getPhi()
{
return(_phi);
}
float Rotorpart::getAlpha(int i)
{
i=i&1;
if (i==0)
return _alpha*180/3.14;//in Grad = 1
else
if (_alpha2type==1) //yaw or roll
return (getAlpha(0)-_oppositerp->getAlpha(0))/2;
else //pitch
return (getAlpha(0)+_oppositerp->getAlpha(0)+
_nextrp->getAlpha(0)+_lastrp->getAlpha(0))/4;
}
float Rotorpart::getrealAlpha(void)
{
return _alpha;
}
void Rotorpart::setAlphaoutput(char *text,int i)
{
printf("setAlphaoutput rotorpart [%s] typ %i\n",text,i);
strncpy(_alphaoutputbuf[i>0],text,255);
if (i>0) _alpha2type=i;
}
char* Rotorpart::getAlphaoutput(int i)
{
return _alphaoutputbuf[i&1];
}
void Rotorpart::setLen(float value)
{
_len=value;
}
void Rotorpart::setNormal(float* p)
{
int i;
for(i=0; i<3; i++) _normal[i] = p[i];
}
void Rotorpart::getNormal(float* out)
{
int i;
for(i=0; i<3; i++) out[i] = _normal[i];
}
void Rotorpart::setCollective(float pos)
{
_collective = pos;
}
void Rotorpart::setCyclic(float pos)
{
_cyclic = pos;
}
void Rotorpart::setlastnextrp(Rotorpart*lastrp,Rotorpart*nextrp,Rotorpart *oppositerp)
{
_lastrp=lastrp;
_nextrp=nextrp;
_oppositerp=oppositerp;
}
void Rotorpart::strncpy(char *dest,const char *src,int maxlen)
{
int n=0;
while(src[n]&&n<(maxlen-1))
{
dest[n]=src[n];
n++;
}
dest[n]=0;
}
// Calculate the aerodynamic force given a wind vector v (in the
// aircraft's "local" coordinates) and an air density rho. Returns a
// torque about the Y axis, too.
void Rotorpart::calcForce(float* v, float rho, float* out, float* torque)
{
{
_zentipetalforce=_mass*_len*_omega*_omega;
float vrel[3],vreldir[3];
Math::sub3(_speed,v,vrel);
Math::unit3(vrel,vreldir);//direction of blade-movement rel. to air
float delta=Math::asin(Math::dot3(_normal,vreldir));//Angle of blade which would produce no vertical force
float cyc=_mincyclic+(_cyclic+1)/2*(_maxcyclic-_mincyclic);
float col=_minpitch+(_collective+1)/2*(_maxpitch-_minpitch);
//printf("[%5.3f]",col);
_incidence=(col+cyc)-_delta3*_alphaalt;
cyc*=_relamp;
float beta=cyc+col;
//float c=_maxpitchforce/(_maxpitch*_zentipetalforce);
float c,alpha,factor;
if((_omega*10)>_omegan)
{
c=_maxpitchforce/_omegan/(_maxpitch*_mass*_len*_omega);
alpha = c*(beta-delta)/(1+_delta3*c);
factor=_dt*_dynamic;
if (factor>1) factor=1;
}
else
{
alpha=_alpha0;
factor=_dt*_dynamic/10;
if (factor>1) factor=1;
}
float vz=Math::dot3(_normal,v);
//alpha+=_c2*vz;
float fcw;
if(_c2==0)
fcw==0;
else
//fcw=vz/_c2*_maxpitchforce*_omega/_omegan;
fcw=vz*(_c2-1)*_maxpitchforce*_omega/(_omegan*_omegan*_len*_maxpitch);
float dirblade[3];
Math::cross3(_normal,_directionofzentipetalforce,dirblade);
float vblade=Math::abs(Math::dot3(dirblade,v));
float tliftfactor=Math::sqrt(1+vblade*_translift);
alpha=_alphaalt+(alpha-_alphaalt)*factor;
//alpha=_alphaalt+(alpha-_lastrp->getrealAlpha())*factor;
_alpha=alpha;
//float schwenkfactor=1;// 1/Math::cos(_lastrp->getrealAlpha());
float meancosalpha=(1*Math::cos(_lastrp->getrealAlpha())
+1*Math::cos(_nextrp->getrealAlpha())
+1*Math::cos(_oppositerp->getrealAlpha())
+1*Math::cos(alpha))/4;
float schwenkfactor=1-(Math::cos(_lastrp->getrealAlpha())-meancosalpha);
//fehlt: verringerung um rellenhinge
float xforce = /*schwenkfactor*/ Math::cos(alpha)*_zentipetalforce;// /9.81*.453; //N->poundsofforce
float zforce = fcw+tliftfactor*schwenkfactor*Math::sin(alpha)*_zentipetalforce;// /9.81*.453;
float thetorque = _torque_no_force+_torque_max_force*Math::abs(zforce/_maxpitchforce);
/*
printf("speed: %5.3f %5.3f %5.3f vwind: %5.3f %5.3f %5.3f sin %5.3f\n",
_speed[0],_speed[1],_speed[2],
v[0],v[1],v[2],Math::sin(alpha));
*/
int i;
for(i=0; i<3; i++) {
torque[i] = _normal[i]*thetorque;
out[i] = _normal[i]*zforce+_directionofzentipetalforce[i]*xforce;
}
//printf("alpha: %5.3f force: %5.3f %5.3f %5.3f %5.3f %5.3f\n",alpha*180/3.14,xforce,zforce,out[0],out[1],out[2]);
return;
}
}
}; // namespace yasim

116
src/FDM/YASim/Rotorpart.hpp Normal file
View file

@ -0,0 +1,116 @@
#ifndef _ROTORPART_HPP
#define _ROTORPART_HPP
namespace yasim {
class Rotorpart
{
public:
Rotorpart();
// Position of this surface in local coords
void setPosition(float* p);
void getPosition(float* out);
void setPositionForceAttac(float* p);
void getPositionForceAttac(float* out);
void setNormal(float* p);
void getNormal(float* out);
void setMaxPitchForce(float force);
void setCollective(float pos);
void setCyclic(float pos);
void setSpeed(float* p);
void setDirectionofZentipetalforce(float* p);
void setZentipetalForce(float f);
void setMaxpitch(float f);
void setMinpitch(float f);
void setMaxcyclic(float f);
void setMincyclic(float f);
void setDelta3(float f);
void setDynamic(float f);
void setTranslift(float f);
void setC2(float f);
void setZentForce(float f);
void setRelLenHinge(float f);
void setRelamp(float f);
float getAlpha(int i);
float getrealAlpha(void);
char* getAlphaoutput(int i);
void setAlphaoutput(char *text,int i);
void inititeration(float dt,float *rot);
float getWeight(void);
void setWeight(float value);
void calcForce(float* v, float rho, float* forceOut, float* torqueOut);
void setlastnextrp(Rotorpart*lastrp,Rotorpart*nextrp,Rotorpart *oppositerp);
void setTorque(float torque_max_force,float torque_no_force);
void setOmega(float value);
void setOmegaN(float value);
float getIncidence();
float getPhi();
void setAlphamin(float f);
void setAlphamax(float f);
void setAlpha0(float f);
void setAlpha0factor(float f);
void setLen(float value);
private:
void strncpy(char *dest,const char *src,int maxlen);
Rotorpart *_lastrp,*_nextrp,*_oppositerp;
float _dt;
float _pos[3]; // position in local coords
float _posforceattac[3]; // position in local coords
float _normal[3]; //direcetion of the rotation axis
float _torque_max_force;
float _torque_no_force;
float _speed[3];
float _directionofzentipetalforce[3];
float _zentipetalforce;
float _maxpitch;
float _minpitch;
float _maxpitchforce;
float _maxcyclic;
float _mincyclic;
float _cyclic;
float _collective;
float _delta3;
float _dynamic;
float _translift;
float _c2;
float _mass;
float _alpha;
float _alphaalt;
float _alphamin,_alphamax,_alpha0,_alpha0factor;
float _rellenhinge;
float _relamp;
float _omega,_omegan;
float _phi;
float _len;
float _incidence;
char _alphaoutputbuf[2][256];
int _alpha2type;
};
}; // namespace yasim
#endif // _ROTORPART_HPP