- this exposed a bizarre issue on Mac where dragging in <AGL/agl.h> in
extensions.hxx was pulling in all of Carbon to the global namespace
- very scary. As a result, I now need to explicitly include CoreFoundation
in fg_init.cxx.
- change SG_USING_STD(x) to using std::x
From Till:
i started the project at the end of february with a simple idea: move all
3d-model loading to the DatabasePager-thread. my first attempts looked
promising, though they were a little too optimistic (or naive?). the patch
has evolved a lot since.
currently it does the following things:
1. revive SGModelLib, move functions for xml-model-loading there
2. replace all calls to sgLoad3dModel with calls to either
SGModelLib::loadModel() or SGModelLib::loadPagedModel()
almost all models will be loaded by the DatabasePager. the few exceptions are:
your own plane, shared models in scenery, random objects, AIBallistic models.
3. simplify mode-loading functions (avoid passing around fg_root)
4. avoid supurious MatrixTransform nodes in loaded models
5. fix some memory leaks
their XML wrapper/animation file. They can access their /ai/models node
via cmdarg() function. Example:
<nasal>
<load>
print("Hi, I'm the Nimitz. My data are under ",
cmdarg().getPath());
</load>
<unload>
...
</unload>
</nasal>
Note, however, that the <unload> block is only called on exit at the moment,
not when the tile is unloaded.
"""
"Flight plans" which can start at a given time (gmt)
WAITUNTIL tokens which pause the flight plans until a given time (gmt)
Submodels can now be attached to any AI objects (except submodels - it can
be done, but in my experimental code it's too expensive in frame rate atm)
"No-roll" attribute added to Ballistic objects - useful for wakes and the
like
"Random" attribute added to Ballistic objects (adds =- 5% to the Cd) -
useful for smoke, exhausts
If the <trigger> tag is not specified the Ballistic object/s will be
released at start-up (cannot be stopped)
Submodels are not released from AI Objects if the AI Object is more than 15
miles away.
"""
mf: minor code and formatting fixes; submodels.?xx were FUBAR and are thus
astyle formatted;
NOTE that <name> tags END, EOF, WAIT, WAITUNTIL are *depreciated*.
Don't get too used to them. This will have to be moved from the "name"
to regular engries.
- Moved AIModels/Traffic Manager related AI functions to a new file
- Rewrote the traffic manager so that the containers use pointers to
objects instead of the objects themselves, which will allow for a
more flexible memory management.
- Rewrote parts of the airport groundnetwork code, also because the
stl containers now contain object pointers instead of the objects
themselves.
- Fixed an uninitialized iterator in the AI distance tracking code
- Fixed flawed logic in some of the traffic controller's while loops
- Added a tower controller, which paces take-off behavior of AITraffic
in a more realistic way.
- Various other minor fixes and fine tuning.
SGPropertyNode to guarded ones. This is also done for JSBSim/JSBSim.hxx,
for which JSB had given explicit permission a while ago. I postponed that
back then, but now is the time.
This patch makes use of the vectors now available in simgear with that past
patch. And using that it simplyfies the carrier code somehow.
- Small additional factory's to the quaternion code are done in the simgear
part. Also more explicit unit names in the factory functions.
- The flightgear part makes use of them and simplyfies some computations
especially in the carrier code.
- The data part fixes the coordinate frames I used for the park positions in
the carrier to match the usual ones. I believed that I had done so, but it
was definitly different. Also there are more parking positions avaliable now.
The new multiplayer patch with an extension to transmit some properties with
the base package. The properties are transmitted in a way that will not
immediately brake the packet format if we need new ones.
Even if the maxmimum number needs to be limited somehow, that format might
work well until we have an improoved packet format which is even more compact
and that does not require to retransmit redundant information with each
packet.
That part is relatively fresh and based on that what Oliver provides on his
multiplayer server web page.
The properties are transferred to the client and I have modified the seahawks
rudder animation property to use a relative property path to verify that it
works appart from the fact that you can see it changing in the property
browser.
The movement is still a bit jerky, but that can be fixed/tuned later without
again braking the packet format.
This patch removes some useless indirection when creating AIModels. It
obsolets AIScenario*.
AIEntities are just an intermediate copy of an other intermediate copy of an
xml file on the way from the ai scenario configuration file to the AIModels.
As such the AImodels can now be created directly from the property tree read
from the scenario file.
This reduces the amount of work needed to add an other AIModel and reduces the
amount of copy operations done during initialization.
It also moves internal knowledge of special AI models into these special AI
models class instead of spreading that into the whole AIModel subdirectory
which in turn enables to use carrier internal data structures for carrier
internal data ...
Also some unused variables are removed from the AIModel classes.
I believe that there are still more of them, but that is what I stumbled
accross ...
Tested, like the other splitouts these days in a seperate tree and using the
autopilot for some time, and in this case with a carrier start ...
This patch is a combined effort by Gregor Richards, Oliver Schroeder, and
Vivian Meazza (and code cleanups and improvements by Erik Hofman). It corrects
the bug in which a Multiplayer model responds to local inputs, and the view
number bug which caused certain aircraft to appear as cockpit only models. It
passes remote properties over the net, and all major control surfaces and gear
are now animated correctly, providing that the local ~model.xml file contains
no leading "/" in the <property></property> data entries. MP objects
are now extrapolated using 1st and 2nd derivatives to make their movement
appear more smooth. The sim is now halted while a new client joins the net.
Known problems with MP are non-display of the remote client under certain
circumstances of starting/resetting, and a freeze on starting. These bugs are
long standing, and are not addressed by this patch.
Special thanks must go to AJ Macleod for his patient testing of this patch over many evenings.
We have also moved part of multiplayer into AIModels as part of the ongoing
development of MP.
I tried to make sure accessor functions which return by reference act
on const objects. also replaced some iterators with const_iterator
and a few return/pass by reference that were missed the first time
around.
Some quite extensive changes to the AIModel code:
1. Mathias has made major changes to the AICarrier code to provide better
alignment of an aircraft on deck with the carrier - this feature is a major
improvement on the existing, but has a bug which might cause it to fail when
the computer carries out other tasks - changing window size is a known
example. This bug is outwith this code.
2. I have made significant changes to the AIShip code to enable a ship the
turn and roll smoothly.
3. I have added some simple AI which enables the carrier to remain within,
or return to, an operating box.
4. An automated turn into wind for flying operations.
5. A simplistic implementation of TACAN within AICarrier. I am in the course
of implementing this as a generic instrument, but this is some time off
completion.
I have traced that reset on carrier problem down to several problems. One of
them is the fact that on reset the carrier is updated while the aircraft is
not. That made the aircraft drop down an elevator sometimes. Depending on the
passed realtime while loading some parts of the scenery.
I have introduced the posibility to start directly on the carrier.
With that patch you will have a --carrrier=id argument where id can either be
the pennant number configured in the nimitz scenario or the carriers name
also configured in the carriers scenario.
Additionaly you can use --parkpos=id to select different positions on the
carrier. They are also configured in the scenario file.
That includes the switch of the whole FGInterface class to make use of the
groundcache.
That means that an aircraft no longer uses the current elevation value from
the scenery class. It rather has its own local cache of the aircrafts
environment which is setup in the common_init method of FGInterface and
updated either manually by calling
FGInterface::get_groundlevel_m(lat, lon, alt_m);
or implicitly by calling the above method in the
FGInterface::_updateGeo*Position(lat, lon, alt);
methods.
A call get_groundlevel_m rebuilds the groundcache if the request is outside
the range of the cache.
Note that for the real usage of the groundcache including the correct
information about the movement of objects and the velocity information, you
still need to set up the groundcache in the usual way like YASim and JSBSim
currently does.
If you use the native interface, you will get only static objects correctly.
But for FDM's only using one single ground level for a whole step this is IMO
sufficient.
The AIManager gets a way to return the location of a object which is placed
wrt an AI Object. At the moment it only honours AICarriers for that.
That method is a static one, which loads the scenario file for that reason and
throws it away afterwards. This looked like the aprioriate way, because the
AIManager is initialized much later in flightgears bootstrap, and I did not
find an easy way to reorder that for my needs. Since this additional load is
very small and does only happen if such a relative location is required, I
think that this is ok.
Note that moving on the carrier will only work correctly for JSBSim and YASim,
but you should now be able to start and move on every not itself moving
object with any FDM.
I added an AIStatic object to my OV-10 sim for use in putting city signs,
vehicles, or anything else that will be static, but that I don't want to put
in the scenery files. It's inexpensive. Before, I was making such things
from AIShip.
I also added the ability to set flight plans to repeat, so that when an
airplane reaches the end it just starts over at the beginning. This is
useful for my OV-10 sim. I have C-141 and KC-135 traffic flying approaches
to Ramstein, and I only have to define two AI objects to do this.
Also, I found an inefficiency in AIBase, where every AI object was calculating
Mach number at every dt. Now only AIBallistic objects do this.
I'm looking through the AI code, trying to find the bug that's killing the
thermals. The following things don't look right:
1) AIManager::101 , the Traffic Manager pointer is searched for by name at
every dt. I'll leave this for you to look at.
2) AIManager::295 , the thermal height is not being set. We need to
restore the line: ai_thermal->setHeight(entity->height_msl);
This fixes the thermal problem.
3) AIManager::328 , I changed the fetching of the user state to occur every
sim cycle, and changed the fetching function from by-name lookup to a lookup
by node pointer. It should be faster now, and more accurate too. This helps
the air-refueling.
I have done some cleanup where I moved some values out of classes where they
do not belong and such stuff.
Also the fols offsets are now named in the carrier xml file with a more
verbose name (flols-pos/offset-*) than before (only offset-*).
There is a little preparation for definitions of parking positions on the
carrier which should later be used for starting flightgear directly on the
carrier.
Okay, here's the latest update to the tarffic manager/AI Manager. AITraffic
can now fly multiple routes and be initialized while sitting statically at
airports.
The value of rho (air density) varies with height. (Including the upper
stratosphere, ust in case someone wants to model ICBMs.) The standard
atmosphere is used (based on a sea-level temperature of 15 deg C.).
Erik Hofman:
I moved this code over the AIBase::update() so all AIModels can make
use of rho, temperature, pressure, etc.
I've added another parameter to the submodel - wind.
It's activated by the entry <wind>true</wind> in the ../submodel.xml file.
If true, the submodel is affected by the local wind, otherwise not. The
parameter defaults to false. This is useful for exhausts and smoke, and
possibly all objects.
Attached are the modified files to add buoyancy as a parameter for a
ballistic object. It may be set by adding
<buoyancy>x</buoyancy> to the submodel .xml file, where x is the appropriate
value (ft per sec2):
32 neutral buoyancy - contrails
>32 positive buoyancy - exhaust plumes
(0 non-op - default value)
If <buoyancy>x</buoyancy> is not used, then there is no effect on the
current ballistic model
Silly me. I was starting the timer at zero, so the first tracer didn't fly
until 0.25 seconds after pulling the trigger. Now the timer starts at the
same value as "delay", so the first round comes out immediately.
Also, I've added an optional configuration attribute that allows you to change
the ballistics of the submodel. This allows parachutes, or anything else
that has ballistics different from a bullet. The attribute is called "eda",
which is the equivalent drag area. Default value is 0.007, which gives the
same ballistics as the current tracers. Increasing this value gives more
drag. A value of 2.0 looks good for a parachute.
math stuff
########################################################################
The deceleration of the ballictic object is now given by:
[ (rho) (Cd) ] / [ (1/2) (m) ] * A * (V * V)
where rho is sea-level air density, and Cd and m are fixed, bullet-like
values. So the calculation is:
0.0116918 * A * (V * V)
The value "A" is what I'm calling the "eda" (equivalent drag area).
########################################################################
A parachute model will have to be built so that the parachutist's feet
are in the forward x-direction.
Here is the submodel.xml config I use for "parachutes":
<submodel>
<name>flares</name>
<model>Models/Geometry/flare.ac</model>
<trigger>systems/submodels/submodel[0]/trigger</trigger>
<speed>0.0</speed>
<repeat>true</repeat>
<delay>0.85</delay>
<count>4</count>
<x-offset>0.0</x-offset>
<y-offset>0.0</y-offset>
<z-offset>-4.0</z-offset>
<yaw-offset>0.0</yaw-offset>
<pitch-offset>0.0</pitch-offset>
<eda>2.0</eda>
</submodel>
Here's some new AI stuff.
1) AI objects must now be defined in a scenario file, not in preferences.xml
or a *-set file. (Of course this doesn't prevent objects from being created
dynamically, as with Durk's traffic manager).
2) A new demo_scenario file is attached. It creates 3 aircraft, a sailboat,
and a thunderstorm.
3) Objects without flightplans live forever.
4) FGAIShip::ProcessFlightplan() is not yet implemented.
5) preferences.xml should now define only <enabled> and <scenario>
1. Removed aircraft roll on ground.
2. Decreased descent pitch angle.
3. Updated flightplans to include <on-ground>
4. Fixed property indexing, so all AI aircraft have their own property branch
The default value of <on-ground> is false, so you only need to specify it when
on the ground. For takeoff you need to specify <on-ground>true</on-ground>
for the first waypoint, and for the acceleration waypoint. For landing you
need to specify it for the touchdown point and any taxi points.
One problem. WARNING **** There is a bug in the way the property system
works, which causes a segfault, but I don't know if the problem is in the
property code, or in how I'm using it. After an AI object terminates, if you
access the property tree through the property browser the sim will segfault.
First, preferences.xml will define the scenario filename.
For now, the other way of defining ai objects still works, so the sailboat
stays in preferences.xml. Later, I'll move the sailboat into the demo
scenario. If no scenario filename is given, then no scenario will be
processed.
I changed the demo scenario to create two 737's, one takes off on runway 01L,
and the other takes off on runway 01R. This will make a good demo for the ai
system. One problem, if you takeoff on 28L/R right away, you might run into
the taking-off 737's, or be scared.
Here's the newest AI stuff.
The AIManager at init() creates a new scenario. Right now the
default_scenario is hard coded in, but eventually the AIManager should get
the scenario filename from preferences.xml.
The scenario defines which AI objects will be created. Right now it only
creates AIAircraft, but this is easily extended. The scenario also defines
which flightplan will be assigned to the airplane. Scenario config files go
in data/Data/AI.
The Airplane gets a pointer to a FlightPlan object. Each airplane should get
its own flightplan object, even if two airplanes have the same flight plan.
This is because the flightplan maintains the iterator pointing to the
current waypoint, and two airplanes might be at different locations (for
instance if they were created at different times). The flight plan files go
in data/Data/AI/FlightPlans.
When the airplane gets to the waypoint named "END" it vanishes. The
AIAircraft destructor deletes its flight plan (if it has one).
The last waypoint is a place holder only. I called mine
<WPT><NAME>"EOF"</NAME></WPT>.
I added some things to the AI stuff to improve the AIThermal processing.
Before, all the thermals were processed in order, and the last one overwrote
the prior one. Now, only the data from the nearest thermal is kept. This
way a tile can be populated with many thermals, and (as long as they have the
same diameter) the one nearest the airplane correctly takes effect. This
will make us ready for the next step, "auto-thermaling", where FlightGear's
tile manager can cover a tile with thermals, and set the thermal strength
based on land-use type.
I moved the enumerated object_type to the base class. When an AI object is
created it now sets the _otype variable in the base class. This lets the AI
manager find out what kind of AI object it is dealing with, using the base
pointer. I also added a function isa() to the base class, so the manager can
process objects differently based on their type.
The AI manager now sends AIThermal processing to a different function, where
only the data from the nearest thermal is kept. After the manager processes
all the AI objects, then the results from the nearest thermal are applied to
wind-from-down.
Here's a new batch of AI code which includes a working radar instrument.
I put the radar calculations into the existing AIAircraft class. It was
easier that way, and it can always be migrated out later if we have to.
Every tenth sim cycle the AIManager makes a copy of the current user state
information. When the AIAircraft updates it uses this information to
calculate the radar numbers. It calculates:
1) bearing from user to target
2) range to target in nautical miles
3) "horizontal offset" to target. This is the angle from the nose to the
target, in degrees, from -180 to 180. This will be useful later for a HUD.
4) elevation, in degrees (vertical angle from user's position to target
position)
5) vertical offset, in degrees (this is elevation corrected for user's pitch)
6) rdot (range rate in knots, note: not working yet, so I commented it out)
and three items used by the radar instrument to place the "blip"
7) y_shift, in nautical miles
8) x_shift, in nautical miles
9) rotation, in degrees
The radar instrument uses the above three items, and applies a scale factor to
the x-shift and y-shift in order to match the instrument's scale. Changing
the display scale can be done entirely in the XML code for the instrument.
Right now it's set up only to display a 40 mile scale.
The radar is an AWACS view, which is not very realistic, but it is useful and
demonstrates the technology. With just a little more work I can get a HUD
marker. All I need to do there is make a bank angle adjustment to the
current values.