to pop themselves down while the simulator is paused.
The problem was with the "real time" queue in the event manager,
causing the third argument of Nasal's settimer() (a flag for "sim
time") to be ignored. Inverts the default sense of the argument, as
there are lots of uses of settimer() in the current code, almost none
of which want to use real time.
Note this fix introduces a header file incompatibility in SimGear --
be sure to update.
there was the situation where four directories contained jst two files,
of which three directories were aircraft related, and one directory contained
test code from Curt that might be better of in SimGear anyhow.
This is just a patch to move a bunch of files to new locations. In case of
local changes to any of them you can do the following:
move replay.[ch]xx from src/Replay to src/Aircraft
move control.[ch]xx from src/Control to src/Aircraft
move ssgEntityArray.[ch]xx from src/Objects to simgear/screen
In addition it has been decided only to use .[ch]xx files in all directories
unless it's contained within an FDM specific directory, in which case the
author is free to do whatever (s)he wants.
In this repspect the following files have been renamed in src/Multiplayer:
tiny_xdr.[ch]pp has become tiny_xdr.[ch]xx
multiplaymgr.[ch]pp has become multiplaymgr.[ch]xx
I stumbled across two memory errors with two wrong const references to
std::string.
As I fixed that, I also moved aircraft_dir which is only used from UIUC into
UIUC. With that uiuc_aircraftdir.h is empty and can be removed.
This adds a TACAN instrument to the inventory. Range and bearing are calculated
to the TACAN or VORTAC beacon selected by means of the Channel Selector in the E
quipment/Radio pull-down menu.
A TACAN beacon has also been added to the aircraft carrier Nimitz (channel #029Y
).
Attached is a patch to the airport data storage that I would like committed
after review if acceptable. Currently the storage of airports mapped by ID
is by locally created objects - about 12 Meg or so created on the stack if
I am not mistaken. I've changed this to creating the airports on the heap,
and storing pointers to them - see FGAirportList.add(...) in
src/Airports/simple.cxx. I believe that this is probably better practice,
and it's certainly cured some strange problems I was seeing when accessing
the airport data with some gps unit code. Changes resulting from this have
cascaded through a few files which access the data - 11 files are modified
in all. Melchior and Durk - you might want to test this and shout if there
are problems since the metar and traffic code are probably the biggest
users of the airport data. I've also added a fuzzy search function that
returns the next matching airport code in ASCII sequence in order to
support gps units that have autocompletion of partially entered codes.
More generally, the simple airport class seems to have grown a lot with the
fairly recent addition of the parking, runway preference and schedule time
code. It is no longer just an encapsulation of the global airport data
file, and has grown to 552 bytes in size when unpopulated (about 1/2 a K!).
My personal opinion is that we should look to just store the basic data in
apt.dat for all global airports in a simple airport class, plus globally
needed data (metar available?), and then have the traffic, AI and ATC
subsystems create more advanced airports for themselves as needed in the
area of interest. Once a significant number of airports worldwide have
ground networks and parking defined, it will be impractical and unnecessary
to store them all in memory. That's just a thought for the future though.
I have prepared a patch that:
- Introduces a FGTileMgr::scenery_available method which asks the tilemanager
if scenery for a given range around a lat/lon pair is already loaded and make
use of that method at some -9999 meter checks.
- Introduces a FGScenery::get_elevation_m method which queries the altitude at
a given position. In constrast to the groundcache functions this is the best
choice if you ask for one *single* altitude value. Make use of that thing in
AI/ATC classes and for the current views ground level. At the current views
part the groundcache is reused if possible.
- The computation of the 'current groundlevel' is no longer done on the
tilemanagers update since the required functions are now better seperated.
Alltogether it eliminates somehow redundant terrain level computations which
are now superseeded by that more finegrained functions and the existence of
the groundcache. Additionally it introduces an api to commonly required
functions which was very complex to do prevously.
I have traced that reset on carrier problem down to several problems. One of
them is the fact that on reset the carrier is updated while the aircraft is
not. That made the aircraft drop down an elevator sometimes. Depending on the
passed realtime while loading some parts of the scenery.
I have introduced the posibility to start directly on the carrier.
With that patch you will have a --carrrier=id argument where id can either be
the pennant number configured in the nimitz scenario or the carriers name
also configured in the carriers scenario.
Additionaly you can use --parkpos=id to select different positions on the
carrier. They are also configured in the scenario file.
That includes the switch of the whole FGInterface class to make use of the
groundcache.
That means that an aircraft no longer uses the current elevation value from
the scenery class. It rather has its own local cache of the aircrafts
environment which is setup in the common_init method of FGInterface and
updated either manually by calling
FGInterface::get_groundlevel_m(lat, lon, alt_m);
or implicitly by calling the above method in the
FGInterface::_updateGeo*Position(lat, lon, alt);
methods.
A call get_groundlevel_m rebuilds the groundcache if the request is outside
the range of the cache.
Note that for the real usage of the groundcache including the correct
information about the movement of objects and the velocity information, you
still need to set up the groundcache in the usual way like YASim and JSBSim
currently does.
If you use the native interface, you will get only static objects correctly.
But for FDM's only using one single ground level for a whole step this is IMO
sufficient.
The AIManager gets a way to return the location of a object which is placed
wrt an AI Object. At the moment it only honours AICarriers for that.
That method is a static one, which loads the scenario file for that reason and
throws it away afterwards. This looked like the aprioriate way, because the
AIManager is initialized much later in flightgears bootstrap, and I did not
find an easy way to reorder that for my needs. Since this additional load is
very small and does only happen if such a relative location is required, I
think that this is ok.
Note that moving on the carrier will only work correctly for JSBSim and YASim,
but you should now be able to start and move on every not itself moving
object with any FDM.
/sim/startup/splash-progress)
- a string in /sim/startup/splash-title is displayed on top of the screen
and by default empty
- the splash image is scaled down if 512x512 is too big
- code cleanup
have a "property" mode as well as the original "binary" mode. The property mode
will allow the remote module to request any set of properties, and it will send
those properties each frame. The remote module can reply with a list of arbitrary
property name/value pairs to update on the FlightGear side.
This is a first stab, so it's not the cleanest, most well concieved code, but it
allows an external module (communicating via a pipe) to have a huge amount of
flexibility in the data in can access and update.
I just heard from John Wojnaroski that you and he are going to work on getting
a flightgear demo machine up for the linux expo thursday and Friday. John
indicated that he would very much like to get a CVS version with the new
traffic code up and running before the expo.
RE: --aircraft=ufo in system.fgfsrc is ignored
To change a 'feature', one that has been mentioned here many
times, and again recently, place the following code block
into fgInitFGAircraft.
In its favour, I would argue this means FG can be run without
a command line, provided FG_ROOT has been set in the
environment, and that seems to me, as it should be ... ;=))
Perhaps the only counter, is that system.fgfsrc is read twice,
but so are others, like .fgfsrc, for other (local) options ...
or system.fgfsrc should .nt. be used for 'aircraft' ?
a single apt.dat.gz file which is in the native X-Plane format.
To do this I wrote a front end loader than builds the airport and runway
list. Some of the changes I needed to make had a cascading effect, so there
are minor naming changes scattered throughout the code.
I've finished the emigration of the radiostack, and I've also removed it
completely. It turned out that the comm radio is completely implemented in
the ATC subsystem. I've changed the affected ATC files to point
to /instrumentation/com, but I guess that the maintainer of the ATC code
should decide wether to make it configureable, and how.
I also had to change some files in Network and Main. The changes in network
should be obvious, but the changes in Main were a bit suspect. The files
included radiostack.hxx, but they weren't directly depending on
radiostack-hxx. They were depending on other files that were included by
radiostack.hxx. I got it to compile, but I'm not sure if I included the
correct directly depending file.
For the data directory I changed every occurrence of /radios/
with /instrumentation/ with this simple one-liner that I found on the net:
find -name '*.xml' -type f | xargs perl -pi -e
's/\/radios\//\/instrumentation\//g'
Instead of me sending all the files that got changed by this I suggest that
you execute the one-liner yourself. Of course I can not guarantee that this
will work perfectly, but I considered hand editing to be not an option (I'm
lazy). I don't want to test every aircraft to see if everything still works,
I think it's better to wait and see if anyone complaints about broken nav
radios/instruments.
Don't overwrite user settings from config files.
fgfs had in any case set bump-mapping to false, no matter if this
node did already exist (because it was defined in a config file).
A good elevation is critical for proper glide slope modeling. This patch
assigns the average field elevation to any ILS component that doesn't have
a valid elevation.
Also, for an ILS approach, use the GS transmitter elevation for glide slope
calculations rather than the localizer elevation, in some cases this can
make a big difference.
These change add some code that at initialization time will snap all
localizers into perfect alignment with their runways. It's my experience
that the DAFIF/FAA data reports runway and localizer headings to a level
of precision that is great for making charts, or adjusting your OBS, etc.
But the level of precision of this data can be far enough off to make you
visibly *un*aligned with the runway when the CDI needle is centered.
There are probably cases where the localizer isn't really perfectly
aligned with the runway, or intentionally misaligned to avoid obstacles
or terrain. So I have made this configurable for those that trust the
data more than I do. Just set "/sim/navdb/auto-align-localizers" to
true/false in the preferences file to turn this feature on or off in the
code.
- FG now directly supports Robin's native nav database file format.
- His latest data now separates out dme, gs, loc, and marker beacon
transmitters rather than lumping them all into a single "ILS" record.
- These new data structure changes prompted me to do some code restructuring
so that internally these different types of navaids are all kept as
separate lists and searched and handled separately.
- This structural change had a cascading affect on any code that
references or uses the nav databases. I've gone and "touched" a lot of
nav related code in a lot of places.
- As an added bonus, the new data (and code) adds DME bias so these will
all now read as they do in real life.
- Added Navaids/navdb.cxx and Navaids/navdb.hxx which provide a front
end loaders for the nav data.
- Added Navaids/navrecord.hxx which is a new "generic" nav data record.
- Removed Navaids/ils.hxx, Navaids/ilslist.cxx, Navaids/ilslist.hxx,
Navaids/mkrbeacons.cxx, and Navaids/mkrbeacons.hxx which are all now
depricated.
are many recognized limitations and inefficiencies with this entire approach,
however, it's a quick and dirty way to get something working, where before
we didn't.
Here's a patch to locate the base package inside the application bundle on OS-X. The patch also disables the CPSForeground hack in boostrap.cxx, which is unnecessary if the we're running as a proper bundle rather than a Unix command line program.
Both of these changes are only compiled if OSX_BUNDLE is defined (I'm doing this via a setting in ProjectBuilder), so if you're building on OS-X using configure + make, you shouldn't see any chance.
now read the config file out of the individual aircraft directory rather
than the collective Aircraft-yasim/ directory (which is now obsolete.)
This requires a corresponding update of the base package cvs.
$FGROOT/data/Aircraft hierarchy. There could be some long term performance
concerns if a person has a *huge* collection of aircraft or a really slow
file system, but I see zero performance blip here from recursing the default
CVS tree. We should also allow the user to specify the whole path to the
-set.xml file if they don't want to recurse ... this way we could eventually
come up with an aircraft selection dialog box on the front end so the user
could manually walk the tree to the desired aircraft. There also the system
wouldn't have to search for the aircraft.
functions (note to Norman: I looked at the web page you listed and that
looks like a good idea, but I don't have time right now to go through and
debug an entirely new routine. What we have works well enough for now I hope!)
immediate end to glut, only that I'm going through and cleaning up (and
taking inventory of the actual glut dependencies in case I want to investigate
SDL.)
I have added a fledgling replay system that records flight data and control
positions during the flight.
I have added an internal command called "replay" which will trigger a replay
of the entire saved flight data set. This could be bound to a keyboard or
menu command, in fact this entire module is screaming for someone to build
a gui to control playback speed, amount of playback, etc.
This is the initial version so there are kinks that still need to be worked
out, please be patient.
etc.
Improved the weather system to interpolate between different
elevations and deal with boundary-layer conditions. The configuration
properties are now different (see $FG_ROOT/preferences.xml).
requested parameters to determine if this should be an on-ground vs. in-air
start. The problem was that we never defaulted the value to anything so
if we didn't match an in-air condition, we simply inherited whatever value
was there from before.
scene management code and organizing it within simgear. My strategy is
to identify the code I want to move, and break it's direct flightgear
dependencies. Then it will be free to move over into the simgear package.
- Moved some property specific code into simgear/props/
- Split out the condition code from fgfs/src/Main/fg_props and put it
in it's own source file in simgear/props/
- Created a scene subdirectory for scenery, model, and material property
related code.
- Moved location.[ch]xx into simgear/scene/model/
- The location and condition code had dependencies on flightgear's global
state (all the globals-> stuff, the flightgear property tree, etc.) SimGear
code can't depend on it so that data has to be passed as parameters to the
functions/methods/constructors.
- This need to pass data as function parameters had a dramatic cascading
effect throughout the FlightGear code.
The one to fg_init.cxx initialises the AI subsystem regardless of whether it's enabled or not so that later enabling by the user doesn't crash it, and the one to main.cxx avoids running the ATC manager and ATC display system unless enabled.
I've fixed a bug in FGRunways::search(aptid, tgt_hdg) which wasn't working properly for airports with multiple parallel runways. I've also firmed up and pulled out into it's own function the GetReverseRunwayNo code, and done some input checking.
As a result of fixing the above in runways.cxx, I've pulled out the
parallel implementation in the functions that set position by airport and
heading/runway number in fg_init.cxx and called the runways functions
instead.