works like this:
1. Parse preferences.xml, which will usually specify a default
aircraft using the /sim/aircraft property.
2. If /sim/aircraft is specified and not empty, parse the properties
in $FG_ROOT/Aircraft/{/sim/aircraft}-set.xml to set up a default
aircraft.
3. During command-line parsing, whenever the --aircraft option appears
set /sim/aircraft appropriately and parse the properties in
$FG_ROOT/Aircraft/{/sim/aircraft}-set.xml. Any --config, --prop, or
--aircraft options afterwards will take precedence.
more intuitive. We switch to an include in the preferences.xml to include
the default model, and then if the user specifies --aircraft=, that is
expanded immediately so portions can be overwritten by subsequent command
line options.
Here's an unusual patch for FlightGear -- I've created .cvsignore
files for every source directory, to make CVS output more informative.
This is especially nice when using cvs-examine from (X)Emacs to look
for changes.
a top level aircraft def file (c172-set.xml)
preferences.xml or --aircraft= or any other property setting mechanism can
be used to set the property "/sim/aircraft". After all options and config
files are parsed, the contents of /sim/aircraft is expanded into a *-set.xml
file and loaded.
Note there is still a problem when doing a 'reset' after doing
a 'goto'. Curt says: I also see that doing two subsequent reset's on a
JSBSim model results in a segfault in a deconstructor deep inside JSBSim.
- changed all sound file properties to end in /path for pathname, and
added /sound and /pitch (with current values as defaults)
- don't activate the stall horn if CAS is less than 30kt (this needs
to be refined somehow)
- declarations to support changes to cxx file
Dynamics (Sim)ulator. Basically, this is a rough, first cut of a "different
take" on FDM design. It's intended to be very simple to use,
producing reasonable results for aircraft of all sorts and sizes,
while maintaining simulation plausibility even in odd flight
conditions like spins and aerobatics. It's at the point now where one
can actually fly the planes around.
- delete table in destructor
** src/FDM/flight.cxx
- bind engine properties in FGInterface::bind, and publish properties
for all engines rather than just engine 0
** src/Main/fg_props.cxx
- removed all engine properties; now bound in FGInterface::bind
** src/Sounds/fg_fx.cxx
- support multiple engine and cranking sounds
** src/Sounds/fg_fx.hxx
- support multiple engine and cranking sounds
to control logging
- /sim/logging/classes takes a value like "terrain|astro", where the
names are the macros from simgear/debug/debug_types.h with the
initial "SG_" removed and converted to lower case; for none, use
"none"
- /sim/logging/priority takes a single name like "warn", where the
name is a macro from simgear/debug/debug_types.h with the initial
"SG_" removed and converted to lower case
(the global temperature property returns that at the aircrafts altitude) and
adding "information" to the airport name to avoid having to store it
in the default.atis file 1200 odd times.
Heres an update to the ATIS stuff. In brief:
The possible buffer overflow in the display with wind should
hopefully be fixed.
Temperature is taken from the global temperature property instead
of being hardwired.
The display class now includes an implementation of the member
function to change the repeating message.
The message callsign is no longer hardwired. The first message
from each station is generated with a random callsign.
Subsequent messages from the same station have the callsign
incremented every hour. A map of airport-id vs. last callsign and
transmission time is kept for each station that has transmitted for
the duration of the FlightGear session. The logic might be flaky if
FlightGear is run for more than 24 hours at a stretch between
visiting the same ATIS station though! (ie I don't check the day.)
This map is kept in the atislist class. This might not be the best
long-term place for it (in an ATC class of some sort might be
better), but it works for now.
What was happening was that we screwed up and scheduled tiles for
(lon,lon) rather than (lon,lat) ... note the typo. This generated
bogus tile id's which the system happily accepted, put into the tile
cache system, and attempted to load. The problem was that these bogus
tile id's were negative where as all valid tile id's should be >= 0.
These negative tile id's up the logic used to remove tiles from the
cache. When identifying tiles for removal, we look for the furthest
tile away from us by starting out the furthest id at -1 and if we find
something further, we update the furthest tile id. Then at the end we
check if the furthest tile id >= 0 to see if we found anything we
could remove. However, the furthest tile id was these bogus tiles
with negative tile id's so the system always assumed there was nothing
appropriate for removal. This made it impossible to ever remove a
tile from the cache meaning it quickly filled up and no more tiles
could be loaded.
I fixed the one instance of scheduling tiles for a bogus location, and
added a sanity check so if it ever happens again we'll bomb with an
appropriate error message.