property-adjust.
Modified property-adjust and property-multiply so that they always
work with double values, to simplify the code.
Factored out some common code.
Added a 'mask' argument to the property-adjust and property-multiply
commands. If mask is set to "all" (the default), then the command
works as before; if mask is set to "integer", it works only to the
left of the decimal point; and if mask is set to "decimal", it works
only to the right of the decimal place. This functionality is useful
for tuning VHF COM and NAV radios.
- dialog-open
- dialog-close
- dialog-update
- dialog-apply
The last two can copy a value from a property to a GUI field or
vice-versa either individually or across the whole dialog.
Here is a FGIO class derived from FGSubsystem that replaces the fgIOInit()
and fgIOProcess() functions. The FGIO::update(double delta) doesn't use the
delta argument yet. I suspect it could be used as a replacement for the
calculated interval value but I'm not familiar enough with that piece of code
just yet.
I've also added two "command properties" to fg_commands.cxx that select the
next or previous view. Writing any value to these properties triggers the
corresponding action. As an example I modified my keyboard.xml:
<key n="118">
<name>v</name>
<desc>Next view</desc>
<binding>
<command>property-assign</command>
<property>/command/view/next</property>
<value type="bool">true</value>
</binding>
</key>
<key n="86">
<name>V</name>
<desc>Prev view</desc>
<binding>
<command>property-assign</command>
<property>/command/view/prev</property>
<value type="bool">true</value>
</binding>
</key>
And of course these actions can also be triggered from external scripts via
the props server.
The present sets of bindings result in the throttle being "squared"
about its centre, which is silly. This is because the "squared"
parameter is not set by the throttle binding, but the default is
"true". We discussed this before and I think there was general
agreement that the default should be "false" on the basis of
generality.
This is a small fix for what turned out to be a major bug. Ground elevation
was calculated incorrectly when distant from one of the view locations. This
resulted in several problems including bizarre gear trimming, mid air
"crashes" (as in thinking we hit the ground) and so on when close to or on the
ground.
Unfortunately it does require a second ssg traversal when in tower view
(only), but the increased load isn't all that noticable. For the time being
this really is the best solution. In a future update I will be eliminating
the unecessary per frame traversals for the static views (without having to
maintain multiple ssgRoots).
When we go to multiple FDM instances we will perhaps need to put the ssg
traversal and ground elevation queries for the FDMs into an event timer that
updates the FDMs ground elevation in a round robin fashion (maybe every 1/n
seconds where n is the number of FDM instances running).
(mainly in src/Input/input.cxx) will make src/GUI/mouse.cxx obsolete
and bring the mouse into the same input system as the joystick and
keyboard. This is just preliminary work allowing, covering mouse
clicks (no motion yet), and it actually crashes on a middle or right
click.
The new mouse support is disabled by default until it become stable;
to try it out, you need to configure --with-new-mouse.
Description:
This update includes the new viewer interface as proposed by David M. and
a first pass at cleaning up the viewer/view manager code by Jim W.
Note that I have dropped Main/viewer_lookat.?xx and Main/viewer_rph.?xx and
modified the Makefile.am accordingly.
Detail of work:
Overall:
The code reads a little easier. There are still some unnecessary bits in
there and I'd like to supplement the comments in the viewer.hxx with a tiny
bit on each interface group and what the groupings mean (similar but briefer
than what you emailed me the other day). I tried not to mess up the style,
but there is an occasional inconsistency. In general I wouldn't call it done
(especially since there's no tower yet! :)), but I'd like to get this out
there so others can comment, and test.
In Viewer:
The interface as you suggested has been implemented. Basically everything
seems to work as it did visually. There is no difference that I can see in
performance, although some things might be a tiny bit faster.
I've merged the lookat and rph (pilot view) code into the recalc for the
viewer. There is still some redundancy between the two, but a lot has been
removed. In some cases I've taken some code that we'd likely want to inline
anyway and left it in there in duplicate. You'll see that the code for both
looks a little cleaner. I need to take a closer look at the rotations in
particular. I've cleaned up a little there, but I suspect more can be done
to streamline this.
The external declaration to the Quat_mat in mouse.cxx has been removed. IMHO
the quat doesn't serve any intrinsic purpose in mouse.cxx, but I'm not about
to rip it out. It would seem that there more conventional ways to get
spherical data that are just as fast. In any case all the viewer was pulling
from the quat matrix was the pitch value so I modified mouse.cxx to output to
our pitchOffset input and that works fine.
I've changed the native values to degrees from radians where appropriate.
This required a conversion from degrees to radians in a couple modules that
access the interface. Perhaps we should add interface calls that do the
conversion, e.g. a getHeadingOffset_rad() to go along with the
getHeadingOffset_deg().
On the view_offset (now headingOffset) thing there are two entry points
because of the ability to instantly switch views or to scroll to a new view
angle (by hitting the numeric keys for example). This leaves an anomaly in
the interface which should be resolved by adding "goal" settings to the
interface, e.g. a setGoalHeadingOffset_deg(), setGoalPitchOffset_deg(), etc.
Other than these two issues, the next step here will be to look at some
further optimizations, and to write support code for a tower view. That
should be fairly simple at this point. I was considering creating a
"simulated tower view" or "pedestrian view" that defaulted to a position off
to the right of whereever the plane is at the moment you switch to the tower
view. This could be a fall back when we don't have an actual tower location
at hand (as would be the case with rural airports).
ViewManager:
Basically all I did here was neaten things up by ripping out excess crap and
made it compatible as is with the new interface.
The result is that viewmanager is now ready to be developed. The two
preexisting views are still hardcoded into the view manager. The next step
would be to design configuration xml (eg /sim/view[x]/config/blahblah) that
could be used to set up as many views as we want. If we want to take the easy
way out, we might want to insist that view[0] be a pilot-view and have
viewmanager check for that.
interface instead of string. This will result in a lot more
efficiency later, once I add in a simple hash table for caching
lookups, since it will avoid creating a lot of temporary string
objects. The major considerations for users will be that they cannot
use
node->getName() == "foo";
any more, and will have to use c_str() when setting a string value
from a C++ string.
command will save *all* properties, rather than just those marked as
archivable. This feature was requested by Tony Peden to make it
easier to write documentation on the properties, but it should also be
useful for debugging. There is currently no default binding for the
command with the write-all parameter set to true.
/sim/freeze/master (implimented)
/sim/freeze/fuel (implimented)
/sim/freeze/position (not implimented)
/sim/freeze/time-of-day (not implimented)
/sim/freeze/master is bound to the 'p' key via keyboard.xml, however,
/sim/freeze/fuel is not bound to anything at the moment so you must
change it via the external property interface, or specify an initial
value on the command line.