1
0
Fork 0
flightgear/src/AIModel/AIBallistic.cxx

609 lines
19 KiB
C++
Raw Normal View History

// FGAIBallistic - FGAIBase-derived class creates a ballistic object
//
// Written by David Culp, started November 2003.
// - davidculp2@comcast.net
//
// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
2006-02-21 01:16:04 +00:00
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/point3d.hxx>
#include <simgear/math/sg_random.h>
#include <simgear/math/sg_geodesy.hxx>
#include <Scenery/scenery.hxx>
#include "AIBallistic.hxx"
const double FGAIBallistic::slugs_to_kgs = 14.5939029372;
const double FGAIBallistic::slugs_to_lbs = 32.1740485564;
FGAIBallistic::FGAIBallistic() :
FGAIBase(otBallistic),
2007-07-14 07:35:12 +00:00
_elevation(0),
_aero_stabilised(false),
_drag_area(0.007),
_life_timer(0.0),
_gravity(32.1740485564),
_buoyancy(0),
_random(false),
_ht_agl_ft(0),
_load_resistance(0),
_solid(false),
_report_collision(false),
_report_impact(false),
_wind(true),
_impact_report_node(fgGetNode("/ai/models/model-impact", true)),
_external_force(false)
{
no_roll = false;
}
FGAIBallistic::~FGAIBallistic() {
}
void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode){
return;
}
FGAIBase::readFromScenario(scFileNode);
//setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac"));
setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0));
setElevation(scFileNode->getDoubleValue("elevation", 0));
setDragArea(scFileNode->getDoubleValue("eda", 0.007));
setLife(scFileNode->getDoubleValue("life", 900.0));
setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0));
setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
setWind(scFileNode->getBoolValue("wind", false));
setRoll(scFileNode->getDoubleValue("roll", 0.0));
setCd(scFileNode->getDoubleValue("cd", 0.029));
setMass(scFileNode->getDoubleValue("mass", 0.007));
setStabilisation(scFileNode->getBoolValue("aero_stabilized", false));
setNoRoll(scFileNode->getBoolValue("no-roll", false));
setRandom(scFileNode->getBoolValue("random", false));
setImpact(scFileNode->getBoolValue("impact", false));
setImpactReportNode(scFileNode->getStringValue("impact-reports"));
setName(scFileNode->getStringValue("name", "Rocket"));
setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0));
setSMPath(scFileNode->getStringValue("submodel-path", ""));
setSubID(scFileNode->getIntValue("SubID", 0));
setExternalForce(scFileNode->getBoolValue("external-force", false));
setForcePath(scFileNode->getStringValue("force-path", ""));
setForceStabilisation(scFileNode->getBoolValue("force_stabilized", false));
setXOffset(scFileNode->getDoubleValue("x-offset", 0.0));
setYOffset(scFileNode->getDoubleValue("y-offset", 0.0));
setZOffset(scFileNode->getDoubleValue("z-offset", 0.0));
}
bool FGAIBallistic::init(bool search_in_AI_path) {
FGAIBase::init(search_in_AI_path);
2007-07-14 07:35:12 +00:00
props->setStringValue("material/name", "");
props->setStringValue("name", _name.c_str());
props->setStringValue("submodels/path", _submodel.c_str());
// start with high value so that animations don't trigger yet
_ht_agl_ft = 1e10;
hdg = _azimuth;
pitch = _elevation;
roll = _rotation;
Transform();
return true;
}
void FGAIBallistic::bind() {
// FGAIBase::bind();
props->tie("sim/time/elapsed-sec",
SGRawValueMethods<FGAIBallistic,double>(*this,
&FGAIBallistic::_getTime));
props->tie("material/load-resistance",
SGRawValuePointer<double>(&_load_resistance));
props->tie("material/solid",
SGRawValuePointer<bool>(&_solid));
props->tie("altitude-agl-ft",
SGRawValuePointer<double>(&_ht_agl_ft));
}
void FGAIBallistic::unbind() {
// FGAIBase::unbind();
props->untie("sim/time/elapsed-sec");
props->untie("material/load-resistance");
props->untie("material/solid");
props->untie("altitude-agl-ft");
}
void FGAIBallistic::update(double dt) {
FGAIBase::update(dt);
Run(dt);
Transform();
}
void FGAIBallistic::setAzimuth(double az) {
hdg = _azimuth = az;
}
void FGAIBallistic::setElevation(double el) {
pitch = _elevation = el;
}
void FGAIBallistic::setRoll(double rl) {
_rotation = rl;
}
void FGAIBallistic::setStabilisation(bool val) {
_aero_stabilised = val;
}
void FGAIBallistic::setForceStabilisation(bool val) {
_force_stabilised = val;
}
void FGAIBallistic::setNoRoll(bool nr) {
no_roll = nr;
}
David Culp: Silly me. I was starting the timer at zero, so the first tracer didn't fly until 0.25 seconds after pulling the trigger. Now the timer starts at the same value as "delay", so the first round comes out immediately. Also, I've added an optional configuration attribute that allows you to change the ballistics of the submodel. This allows parachutes, or anything else that has ballistics different from a bullet. The attribute is called "eda", which is the equivalent drag area. Default value is 0.007, which gives the same ballistics as the current tracers. Increasing this value gives more drag. A value of 2.0 looks good for a parachute. math stuff ######################################################################## The deceleration of the ballictic object is now given by: [ (rho) (Cd) ] / [ (1/2) (m) ] * A * (V * V) where rho is sea-level air density, and Cd and m are fixed, bullet-like values. So the calculation is: 0.0116918 * A * (V * V) The value "A" is what I'm calling the "eda" (equivalent drag area). ######################################################################## A parachute model will have to be built so that the parachutist's feet are in the forward x-direction. Here is the submodel.xml config I use for "parachutes": <submodel> <name>flares</name> <model>Models/Geometry/flare.ac</model> <trigger>systems/submodels/submodel[0]/trigger</trigger> <speed>0.0</speed> <repeat>true</repeat> <delay>0.85</delay> <count>4</count> <x-offset>0.0</x-offset> <y-offset>0.0</y-offset> <z-offset>-4.0</z-offset> <yaw-offset>0.0</yaw-offset> <pitch-offset>0.0</pitch-offset> <eda>2.0</eda> </submodel>
2004-08-26 16:25:54 +00:00
void FGAIBallistic::setDragArea(double a) {
_drag_area = a;
David Culp: Silly me. I was starting the timer at zero, so the first tracer didn't fly until 0.25 seconds after pulling the trigger. Now the timer starts at the same value as "delay", so the first round comes out immediately. Also, I've added an optional configuration attribute that allows you to change the ballistics of the submodel. This allows parachutes, or anything else that has ballistics different from a bullet. The attribute is called "eda", which is the equivalent drag area. Default value is 0.007, which gives the same ballistics as the current tracers. Increasing this value gives more drag. A value of 2.0 looks good for a parachute. math stuff ######################################################################## The deceleration of the ballictic object is now given by: [ (rho) (Cd) ] / [ (1/2) (m) ] * A * (V * V) where rho is sea-level air density, and Cd and m are fixed, bullet-like values. So the calculation is: 0.0116918 * A * (V * V) The value "A" is what I'm calling the "eda" (equivalent drag area). ######################################################################## A parachute model will have to be built so that the parachutist's feet are in the forward x-direction. Here is the submodel.xml config I use for "parachutes": <submodel> <name>flares</name> <model>Models/Geometry/flare.ac</model> <trigger>systems/submodels/submodel[0]/trigger</trigger> <speed>0.0</speed> <repeat>true</repeat> <delay>0.85</delay> <count>4</count> <x-offset>0.0</x-offset> <y-offset>0.0</y-offset> <z-offset>-4.0</z-offset> <yaw-offset>0.0</yaw-offset> <pitch-offset>0.0</pitch-offset> <eda>2.0</eda> </submodel>
2004-08-26 16:25:54 +00:00
}
void FGAIBallistic::setLife(double seconds) {
life = seconds;
}
void FGAIBallistic::setBuoyancy(double fpss) {
_buoyancy = fpss;
}
void FGAIBallistic::setWind_from_east(double fps) {
_wind_from_east = fps;
}
void FGAIBallistic::setWind_from_north(double fps) {
_wind_from_north = fps;
}
void FGAIBallistic::setWind(bool val) {
_wind = val;
}
void FGAIBallistic::setCd(double c) {
_Cd = c;
}
void FGAIBallistic::setMass(double m) {
_mass = m;
}
void FGAIBallistic::setRandom(bool r) {
_random = r;
}
void FGAIBallistic::setImpact(bool i) {
_report_impact = i;
}
void FGAIBallistic::setCollision(bool c) {
_report_collision = c;
}
void FGAIBallistic::setExternalForce(bool f) {
_external_force = f;
}
void FGAIBallistic::setImpactReportNode(const string& path) {
if (!path.empty())
_impact_report_node = fgGetNode(path.c_str(), true);
}
void FGAIBallistic::setName(const string& n) {
_name = n;
}
void FGAIBallistic::setSMPath(const string& s) {
_submodel = s;
}
void FGAIBallistic::setFuseRange(double f) {
_fuse_range = f;
}
void FGAIBallistic::setXOffset(double x) {
_x_offset = x;
}
void FGAIBallistic::setYOffset(double y) {
_y_offset = y;
}
void FGAIBallistic::setZOffset(double z) {
_z_offset = z;
}
void FGAIBallistic::setSubID(int i) {
_subID = i;
//cout << "sub id " << _subID << " name " << _name << endl;
}
void FGAIBallistic::setSubmodel(const string& s) {
_submodel = s;
}
void FGAIBallistic::setForcePath(const string& p) {
_force_path = p;
if (!_force_path.empty()) {
SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true );
_force_node = fnode->getChild("force-lb", 0, true);
_force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true);
_force_elevation_node = fnode->getChild("force-elevation-deg", 0, true);
}
}
bool FGAIBallistic::getHtAGL(){
if (globals->get_scenery()->get_elevation_m(pos.getLatitudeDeg(), pos.getLongitudeDeg(),
10000.0, _elevation_m, &_material)){
_ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET;
if (_material) {
const vector<string>& names = _material->get_names();
_solid = _material->get_solid();
_load_resistance = _material->get_load_resistance();
_frictionFactor =_material->get_friction_factor();
if (!names.empty())
props->setStringValue("material/name", names[0].c_str());
else
props->setStringValue("material/name", "");
/*cout << "material " << mat_name
<< " solid " << _solid
<< " load " << _load_resistance
<< " frictionFactor " << frictionFactor
<< endl;*/
}
return true;
} else {
return false;
}
}
double FGAIBallistic::getRecip(double az){
// calculate the reciprocal of the input azimuth
if(az - 180 < 0){
return az + 180;
} else {
return az - 180;
}
}
void FGAIBallistic::setPitch(double e, double dt, double coeff){
double c = dt / (coeff + dt);
pitch = (e * c) + (pitch * (1 - c));
}
void FGAIBallistic::setHdg(double dt, double coeff){
double recip = getRecip(hdg);
double c = dt / (coeff + dt);
//we need to ensure that we turn the short way to the new hdg
if (_azimuth < recip && _azimuth < hdg && hdg > 180) {
hdg = ((_azimuth + 360) * c) + (hdg * (1 - c));
} else if (_azimuth > recip && _azimuth > hdg && hdg <= 180){
hdg = ((_azimuth - 360) * c) + (hdg * (1 - c));
} else {
hdg = (_azimuth * c) + (hdg * (1 - c));
}
}
void FGAIBallistic::Run(double dt) {
_life_timer += dt;
if (_life_timer > life && life != -1)
setDie(true);
//randomise Cd by +- 5%
if (_random)
_Cd = _Cd * 0.95 + (0.05 * sg_random());
// Adjust Cd by Mach number. The equations are based on curves
// for a conventional shell/bullet (no boat-tail).
double Cdm;
if (Mach < 0.7)
Cdm = 0.0125 * Mach + _Cd;
else if (Mach < 1.2 )
Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _Cd;
else
Cdm = 0.2965 * pow(Mach, -1.1506) + _Cd;
//cout << " Mach , " << Mach << " , Cdm , " << Cdm << " ballistic speed kts //"<< speed << endl;
// drag = Cd * 0.5 * rho * speed * speed * drag_area;
// rho is adjusted for altitude in void FGAIBase::update,
// using Standard Atmosphere (sealevel temperature 15C)
// acceleration = drag/mass;
// adjust speed by drag
speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt;
// don't let speed become negative
if ( speed < 0.0 )
speed = 0.0;
double speed_fps = speed * SG_KT_TO_FPS;
double hs;
// calculate vertical and horizontal speed components
if (speed == 0.0) {
hs = vs = 0.0;
} else {
vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
}
//resolve horizontal speed into north and east components:
double speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
double speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
// convert horizontal speed (fps) to degrees per second
double speed_north_deg_sec = speed_north_fps / ft_per_deg_lat;
double speed_east_deg_sec = speed_east_fps / ft_per_deg_lon;
// if wind not required, set to zero
if (!_wind) {
_wind_from_north = 0;
_wind_from_east = 0;
} else {
_wind_from_north = manager->get_wind_from_north();
_wind_from_east = manager->get_wind_from_east();
}
//calculate velocity due to external force
double force_speed_north_deg_sec = 0;
double force_speed_east_deg_sec = 0;
double vs_force_fps = 0;
double hs_force_fps = 0;
double v_force_acc_fpss = 0;
double force_speed_north_fps = 0;
double force_speed_east_fps = 0;
double h_force_lbs = 0;
double normal_force_lbs = 0;
double normal_force_fpss = 0;
double static_friction_force_lbs = 0;
double dynamic_friction_force_lbs = 0;
double friction_force_speed_north_fps = 0;
double friction_force_speed_east_fps = 0;
double friction_force_speed_north_deg_sec = 0;
double friction_force_speed_east_deg_sec = 0;
double force_elevation_deg = 0;
if (_external_force) {
SGPropertyNode *n = fgGetNode(_force_path.c_str(), true);
double force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue();
force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue();
double force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue();
//resolve force into vertical and horizontal components:
double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS );
h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS );
//ground interaction
if (getHtAGL()){
double deadzone = 0.1;
if ( _ht_agl_ft <= (0 + _z_offset + deadzone) && _solid){
normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs;
pos.setElevationFt((_elevation_m * SG_METER_TO_FEET) + _z_offset);
vs = 0;
// calculate friction
// we assume a static Coefficient of Friction (mu) of 0.62 (wood on concrete)
double mu = 0.62;
static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor;
//adjust horizontal force
if (h_force_lbs <= static_friction_force_lbs && hs <= 0.1)
h_force_lbs = hs = 0;
else
dynamic_friction_force_lbs = (static_friction_force_lbs * 0.75);
//ignore wind when on the ground for now
//TODO fix this
_wind_from_north = 0;
_wind_from_east = 0;
}
}
//acceleration = (force(lbsf)/mass(slugs))
v_force_acc_fpss = v_force_lbs/_mass;
normal_force_fpss = normal_force_lbs/_mass;
double h_force_acc_fpss = h_force_lbs/_mass;
double dynamic_friction_acc_fpss = dynamic_friction_force_lbs/_mass;
// velocity = acceleration * dt
hs_force_fps = h_force_acc_fpss * dt;
double friction_force_fps = dynamic_friction_acc_fpss * dt;
//resolve horizontal speeds into north and east components:
force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
double friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
double friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
// convert horizontal speed (fps) to degrees per second
force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat;
force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon;
friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat;
friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon;
}
// convert wind speed (fps) to degrees lat/lon per second
double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat;
double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon;
// set new position
pos.setLatitudeDeg( pos.getLatitudeDeg()
+ (speed_north_deg_sec - wind_speed_from_north_deg_sec
+ force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt );
pos.setLongitudeDeg( pos.getLongitudeDeg()
+ (speed_east_deg_sec - wind_speed_from_east_deg_sec
+ force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt );
//recombine the horizontal velocity components
hs = sqrt(((speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)
* (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
+ ((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)
* (speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)));
if (hs <= 0.00001)
hs = 0;
// adjust vertical speed for acceleration of gravity, buoyancy, and vertical force
vs -= (_gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt;
if (vs <= 0.00001 && vs >= -0.00001)
vs = 0;
// adjust altitude (feet) and set new elevation
altitude_ft = pos.getElevationFt();
altitude_ft += vs * dt;
pos.setElevationFt(altitude_ft);
// recalculate total speed
if ( vs == 0 && hs == 0)
speed = 0;
else
speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS;
// recalculate elevation and azimuth (velocity vectors)
_elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
_azimuth = atan2((speed_east_fps + force_speed_east_fps),
(speed_north_fps + force_speed_north_fps)) * SG_RADIANS_TO_DEGREES;
// rationalise azimuth
if (_azimuth < 0)
_azimuth += 360;
if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter
const double coeff = 0.9;
2007-12-28 22:05:14 +00:00
// we assume a symetrical MI about the pitch and yaw axis
setPitch(_elevation, dt, coeff);
setHdg(dt, coeff);
} else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter
const double coeff = 0.9;
double ratio = h_force_lbs/(_mass * slugs_to_lbs);
double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES;
if (force_pitch <= force_elevation_deg)
force_pitch = force_elevation_deg;
// we assume a symetrical MI about the pitch and yaw axis
setPitch(force_pitch,dt, coeff);
setHdg(dt, coeff);
}
//do impacts and collisions
if (_report_impact && !_impact_reported)
handle_impact();
if (_report_collision && !_collision_reported)
handle_collision();
// set destruction flag if altitude less than sea level -1000
if (altitude_ft < -1000.0)
setDie(true);
} // end Run
double FGAIBallistic::_getTime() const {
return _life_timer;
}
void FGAIBallistic::handle_impact() {
// try terrain intersection
if(!getHtAGL())
return;
if (_ht_agl_ft <= 0) {
SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: terrain impact");
report_impact(_elevation_m);
_impact_reported = true;
// kill the AIObject if there is no subsubmodel
if (_subID == 0)
setDie(true);
}
}
void FGAIBallistic::handle_collision()
{
const FGAIBase *object = manager->calcCollision(pos.getElevationFt(),
pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range);
if (object) {
SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object hit");
report_impact(pos.getElevationM(), object);
_collision_reported = true;
}
}
void FGAIBallistic::report_impact(double elevation, const FGAIBase *object)
{
_impact_lat = pos.getLatitudeDeg();
_impact_lon = pos.getLongitudeDeg();
_impact_elev = elevation;
_impact_speed = speed * SG_KT_TO_MPS;
_impact_hdg = hdg;
_impact_pitch = pitch;
_impact_roll = roll;
SGPropertyNode *n = props->getNode("impact", true);
if (object)
n->setStringValue("type", object->getTypeString());
else
n->setStringValue("type", "terrain");
n->setDoubleValue("longitude-deg", _impact_lon);
n->setDoubleValue("latitude-deg", _impact_lat);
n->setDoubleValue("elevation-m", _impact_elev);
n->setDoubleValue("heading-deg", _impact_hdg);
n->setDoubleValue("pitch-deg", _impact_pitch);
n->setDoubleValue("roll-deg", _impact_roll);
n->setDoubleValue("speed-mps", _impact_speed);
_impact_report_node->setStringValue(props->getPath());
}
// end AIBallistic