1
0
Fork 0
flightgear/src/AIModel/AIBallistic.cxx

117 lines
3 KiB
C++
Raw Normal View History

// FGAIBallistic - FGAIBase-derived class creates a ballistic object
//
// Written by David Culp, started November 2003.
// - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/point3d.hxx>
#include <math.h>
#include "AIBallistic.hxx"
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
FGAIBallistic::FGAIBallistic(FGAIManager* mgr) {
manager = mgr;
_type_str = "ballistic";
_otype = otBallistic;
}
FGAIBallistic::~FGAIBallistic() {
}
bool FGAIBallistic::init() {
FGAIBase::init();
aero_stabilized = true;
hdg = azimuth;
pitch = elevation;
return true;
}
void FGAIBallistic::bind() {
// FGAIBase::bind();
}
void FGAIBallistic::unbind() {
// FGAIBase::unbind();
}
void FGAIBallistic::update(double dt) {
FGAIBase::update(dt);
Run(dt);
Transform();
}
void FGAIBallistic::setAzimuth(double az) {
hdg = azimuth = az;
}
void FGAIBallistic::setElevation(double el) {
pitch = elevation = el;
}
void FGAIBallistic::setStabilization(bool val) {
aero_stabilized = val;
}
void FGAIBallistic::Run(double dt) {
double speed_north_deg_sec;
double speed_east_deg_sec;
// the two drag calculations below assume sea-level density,
// mass of 0.03 slugs, drag coeff of 0.295, frontal area of 0.007 ft2
// adjust speed due to drag
speed -= 0.000082 * speed * speed * dt;
if ( speed < 0.0 ) speed = 0.0;
vs = sin( pitch * SG_DEGREES_TO_RADIANS ) * speed;
hs = cos( pitch * SG_DEGREES_TO_RADIANS ) * speed;
// convert horizontal speed (fps) to degrees per second
speed_north_deg_sec = cos(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lat;
speed_east_deg_sec = sin(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lon;
// set new position
pos.setlat( pos.lat() + speed_north_deg_sec * dt);
pos.setlon( pos.lon() + speed_east_deg_sec * dt);
// adjust altitude (feet)
altitude += vs * dt;
pos.setelev(altitude * SG_FEET_TO_METER);
// adjust vertical speed for acceleration of gravity
vs -= 32.17 * dt;
// recalculate pitch (velocity vector) if aerostabilized
if (aero_stabilized) pitch = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
// recalculate total speed
speed = sqrt( vs * vs + hs * hs);
// set destruction flag if altitude less than sea level -1000
if (altitude < -1000.0) setDie(true);
}