will delay it's reply by 50ms. The ground station can change it's reply delay
to trick the airborn dme unit into reporting a distance that is offset from
the true distance by some constant value. In FG we model this by subtracting
a fixed distance from the actual distance.
It is thus possible in our implimentation for the displayed distance to become
negative. This patch clamp DME distance to a minimum value of 0.00 so it can
never go negative.
A good elevation is critical for proper glide slope modeling. This patch
assigns the average field elevation to any ILS component that doesn't have
a valid elevation.
Also, for an ILS approach, use the GS transmitter elevation for glide slope
calculations rather than the localizer elevation, in some cases this can
make a big difference.
Wouldn't it be better to prepare the whole list of paths (or two
separate ones for Terrain/Objects if necessary) in FGGlobals::set_fg_scenery,
and to pass the vector<string>s to FGTileEntry::load? It doesn't seem to make
a lot of sense to split the path up, modify it, mount it together to one string
again, and then let FGTileEntry::load split it up again.
Here we go:
Main/globals.cxx
================
As fg_scenery is now a string_list, we don't need initialization. Furthermore,
this list is cleared with every set_fg_scenery() call.
ctor: create default dir from fg_root if necessary. Otherwise check all paths
of --fg-scenery/FG_SCENERY: If the path doesn't exist, ignore it. If it contains
a dir Terrain and/or Objects, then only add that to the list. If it contains
neither, then use the path as is.
Scenery/tileentry.cxx
=====================
Trivial: don't split a "base path", but use the given path_list as is.
(I considered a variable name "path_list" better suited than "search".)
Scenery/FGTileLoader.cxx
========================
No more fiddling with sub-paths. This has to be delivered by get_fg_scenery
already.
Here's some additions to AI that allow refueling from an AI tanker (the actual
onload of fuel must be handled by the user's FDM of course, this just lets
the FDM know that the user is in position to refuel).
I've added a new class of AIAircraft called "tanker". It uses the same
performance struct as a jet transport. An AI tanker is just like an AI jet
transport, except it uses the already-existing radar data to control the
boolean property systems/refuel/contact. The code change was minimal.
An AI tanker can be created like this:
<entry>
<callsign>Esso 1</callsign>
<type>aircraft</type>
<class>tanker</class>
<model>Aircraft/737/Models/boeing733.xml</model>
<latitude>37.61633</latitude>
<longitude>-122.38334</longitude>
<altitude>3000</altitude>
<heading>020</heading>
<speed>280</speed>
<roll>-15</roll>
</entry>
This puts a tanker over KSFO at 3000 feet, in a left-hand orbit. When the
user gets within refueling range (contact position) then the property
systems/refuel/contact will be true. Otherwise it is false.
The dimensions of the refueling envelope are pretty rough right now, but still
usable. The user must be behind the tanker (ie. radar y_offset > 0). The
user must be at or below the tanker's altitude (ie. radar elevation > 0).
The user's lat/lon must be within 250 feet of the tanker's lat/lon (ie. radar
range_ft < 250). This last requirement is loose because the radar data is
only updated every 100 ms, which is accurate enough for radar use, but
which is sloppy for air refueling. This could be tightened up by increasing
the radar update rate to once every sim cycle.
I'm going to add a light to the T-38 instrument panel that will monitor the
property systems/refuel/contact. This will make it easier to explore the
boundaries of the refueling envelope.
Here's some new AI stuff.
1) AI objects must now be defined in a scenario file, not in preferences.xml
or a *-set file. (Of course this doesn't prevent objects from being created
dynamically, as with Durk's traffic manager).
2) A new demo_scenario file is attached. It creates 3 aircraft, a sailboat,
and a thunderstorm.
3) Objects without flightplans live forever.
4) FGAIShip::ProcessFlightplan() is not yet implemented.
5) preferences.xml should now define only <enabled> and <scenario>
These change add some code that at initialization time will snap all
localizers into perfect alignment with their runways. It's my experience
that the DAFIF/FAA data reports runway and localizer headings to a level
of precision that is great for making charts, or adjusting your OBS, etc.
But the level of precision of this data can be far enough off to make you
visibly *un*aligned with the runway when the CDI needle is centered.
There are probably cases where the localizer isn't really perfectly
aligned with the runway, or intentionally misaligned to avoid obstacles
or terrain. So I have made this configurable for those that trust the
data more than I do. Just set "/sim/navdb/auto-align-localizers" to
true/false in the preferences file to turn this feature on or off in the
code.
- FG now directly supports Robin's native nav database file format.
- His latest data now separates out dme, gs, loc, and marker beacon
transmitters rather than lumping them all into a single "ILS" record.
- These new data structure changes prompted me to do some code restructuring
so that internally these different types of navaids are all kept as
separate lists and searched and handled separately.
- This structural change had a cascading affect on any code that
references or uses the nav databases. I've gone and "touched" a lot of
nav related code in a lot of places.
- As an added bonus, the new data (and code) adds DME bias so these will
all now read as they do in real life.
- Added Navaids/navdb.cxx and Navaids/navdb.hxx which provide a front
end loaders for the nav data.
- Added Navaids/navrecord.hxx which is a new "generic" nav data record.
- Removed Navaids/ils.hxx, Navaids/ilslist.cxx, Navaids/ilslist.hxx,
Navaids/mkrbeacons.cxx, and Navaids/mkrbeacons.hxx which are all now
depricated.
1. Removed aircraft roll on ground.
2. Decreased descent pitch angle.
3. Updated flightplans to include <on-ground>
4. Fixed property indexing, so all AI aircraft have their own property branch
The default value of <on-ground> is false, so you only need to specify it when
on the ground. For takeoff you need to specify <on-ground>true</on-ground>
for the first waypoint, and for the acceleration waypoint. For landing you
need to specify it for the touchdown point and any taxi points.
One problem. WARNING **** There is a bug in the way the property system
works, which causes a segfault, but I don't know if the problem is in the
property code, or in how I'm using it. After an AI object terminates, if you
access the property tree through the property browser the sim will segfault.
First, preferences.xml will define the scenario filename.
For now, the other way of defining ai objects still works, so the sailboat
stays in preferences.xml. Later, I'll move the sailboat into the demo
scenario. If no scenario filename is given, then no scenario will be
processed.
I changed the demo scenario to create two 737's, one takes off on runway 01L,
and the other takes off on runway 01R. This will make a good demo for the ai
system. One problem, if you takeoff on 28L/R right away, you might run into
the taking-off 737's, or be scared.