- replay.cxx :
corrected a bug, now reinitialize the recording data when replay is
deactivated
- fgclouds.cxx :
cloud layers and weather condition are saved when choosing a weather scenario,
added a new scenario 'none' so we can switch back to standard flightgear
weather
- navradio.cxx :
force a search() on init to initialize some variables, preventing a nearly
infinite loop when delta-time == 0 on the first update()
- electrical.cxx :
uninitialized variable in apply_load() for FG_EXTERNAL supplier
- panel.cxx, panelnode.cxx :
added a property "depth-test" for 2.5D panels so that they update the depth
buffer and are no more visible from the outside of the aircraft when the
aircraft uses textures without an alpha channel
- panel.cxx :
moved the computation of the instruments diffuse color outside the
texturelayer code since this is constant during a frame, this is a big speedup
for 2D panels
These changes represent some attempts to bandaid and patch a hopelessly
flawed system to impliment basic battery charging/discharging as well as
provide the ability to model ammeter gauges and draw current from multiple
sources (like load balancing multiple alternators in a multi-engine aircraft.)
The system design forces all these things to be horrible hacks or depend
on extremely subtle system side effects and call ordering so they may or9
may not work to one degree or another.
As mentioned in the mailing list, my recommendation is to move away from
using this system and instead build a procedural electrical system using
nasal. Sometime in the future we hopefully can impliment a better conceived
data driven electrical system model.
a <rating-amps> tag which also implies that the switch is a circuit breaker.
Eventually we could have code that will automatically trip the breaker if
the current exceeds the rating.
support an attached property name and an intial state, but this can easily
be extended to configure a switch to be a circuit breaker with a max rating,
etc.
current draw. This is only one piece of the puzzle, but as we move forward,
the idea is better modeling of the ammeter, and we could automatically pop
circuit breakers if the current gets too high.
the whole electrical system. We will also need a mechanism to kill
individual suppliers (such as the alternator), but this is good enough
for most training.
The code reads the electrical system config and contructs an internal model.
Nothing is done beyond that yet ... the electrical system is not updated,
nor is it connected to the property system in anyway.