1
0
Fork 0
Commit graph

15 commits

Author SHA1 Message Date
ehofman
d158c8168d Make use of a pointer to a structure to pass multiple parameters around. 2004-09-07 09:53:23 +00:00
ehofman
fed4a2c25a Vivian Meazza:
I've added another parameter to the submodel - wind.

It's activated by the entry <wind>true</wind> in the ../submodel.xml file.
If true, the submodel is affected by the local wind, otherwise not. The
parameter defaults to false. This is useful for exhausts and smoke, and
possibly all objects.
2004-09-05 09:45:34 +00:00
ehofman
1853012d90 Vivian Meazza:
Attached are the modified files to add buoyancy as a parameter for a
ballistic object. It may be set by adding

<buoyancy>x</buoyancy> to the submodel .xml file, where x is the appropriate
value (ft per sec2):

	32   neutral buoyancy - contrails
	>32  positive buoyancy - exhaust plumes
	(0   non-op - default value)

If <buoyancy>x</buoyancy> is not used, then there is no effect on the
current ballistic model
2004-09-01 08:32:54 +00:00
ehofman
af284e4bb9 David Culp: Here are small changes that allow one to set a life-span for submodels. 2004-08-30 09:11:59 +00:00
ehofman
cfc05f5f0d David Culp:
Silly me.  I was starting the timer at zero, so the first tracer didn't fly
until 0.25 seconds after pulling the trigger.  Now the timer starts at the
same value as "delay", so the first round comes out immediately.

Also, I've added an optional configuration attribute that allows you to change
the ballistics of the submodel.  This allows parachutes, or anything else
that has ballistics different from a bullet.  The attribute is called "eda",
which is the equivalent drag area.  Default value is 0.007, which gives the
same ballistics as the current tracers.  Increasing this value gives more
drag.  A value of 2.0 looks good for a parachute.


math stuff
########################################################################
The deceleration of the ballictic object is now given by:

[ (rho) (Cd) ] / [ (1/2) (m) ] * A * (V * V)

where rho is sea-level air density, and Cd and m are fixed, bullet-like
values. So the calculation is:

0.0116918 * A * (V * V)

The value "A" is what I'm calling the "eda" (equivalent drag area).
########################################################################


A parachute model will have to be built so that the parachutist's feet
are in the forward x-direction.
Here is the submodel.xml config I use for "parachutes":

  <submodel>
    <name>flares</name>
    <model>Models/Geometry/flare.ac</model>
    <trigger>systems/submodels/submodel[0]/trigger</trigger>
    <speed>0.0</speed>
    <repeat>true</repeat>
    <delay>0.85</delay>
    <count>4</count>
    <x-offset>0.0</x-offset>
    <y-offset>0.0</y-offset>
    <z-offset>-4.0</z-offset>
    <yaw-offset>0.0</yaw-offset>
    <pitch-offset>0.0</pitch-offset>
    <eda>2.0</eda>
  </submodel>
2004-08-26 16:25:54 +00:00
ehofman
3c1a7174fb David Culp:
Here's some new AI stuff.

1)  AI objects must now be defined in a scenario file, not in preferences.xml
or a *-set file.  (Of course this doesn't prevent objects from being created
dynamically, as with Durk's traffic manager).

2)  A new demo_scenario file is attached.  It creates 3 aircraft, a sailboat,
and a thunderstorm.

3)  Objects without flightplans live forever.

4)  FGAIShip::ProcessFlightplan() is not yet implemented.

5)  preferences.xml should now define only <enabled> and <scenario>
2004-05-29 11:39:10 +00:00
ehofman
22cd6dfb2a David Culp:
1.  Removed aircraft roll on ground.
2.  Decreased descent pitch angle.
3.  Updated flightplans to include <on-ground>
4.  Fixed property indexing, so all AI aircraft have their own property branch


The default value of <on-ground> is false, so you only need to specify it when
on the ground.  For takeoff you need to specify <on-ground>true</on-ground>
for the first waypoint, and for the acceleration waypoint.  For landing you
need to specify it for the touchdown point and any taxi points.


One problem.  WARNING **** There is a bug in the way the property system
works, which causes a segfault, but I don't know if the problem is in the
property code, or in how I'm using it.  After an AI object terminates, if you
access the property tree through the property browser the sim will segfault.
2004-05-21 16:50:19 +00:00
ehofman
4d3e523f90 Add AI models enableing/disableing command line option and support code. 2004-05-19 13:55:49 +00:00
ehofman
0fd9f0a704 David Culp:
First, preferences.xml will define the scenario filename.

For now, the other way of defining ai objects still works, so the sailboat
stays in preferences.xml.  Later, I'll move the sailboat into the demo
scenario.  If no scenario filename is given, then no scenario will be
processed.

I changed the demo scenario to create two 737's, one takes off on runway 01L,
and the other takes off on runway 01R.  This will make a good demo for the ai
system.  One problem, if you takeoff on 28L/R right away, you might run into
the taking-off 737's, or be scared.
2004-05-17 08:45:33 +00:00
ehofman
1dfe93d550 David Culp:
Here's the newest AI stuff.

The AIManager at init() creates a new scenario.  Right now the
default_scenario is hard coded in, but eventually the AIManager should get
the scenario filename from preferences.xml.

The scenario defines which AI objects will be created.  Right now it only
creates AIAircraft, but this is easily extended.  The scenario also defines
which flightplan will be assigned to the airplane.  Scenario config files go
in data/Data/AI.

The Airplane gets a pointer to a FlightPlan object.  Each airplane should get
its own flightplan object, even if two airplanes have the same flight plan.
This is because  the flightplan maintains the iterator pointing to the
current waypoint, and two airplanes might be at different locations (for
instance if they were created at different times).  The flight plan files go
in data/Data/AI/FlightPlans.

When the airplane gets to the waypoint named "END" it vanishes.  The
AIAircraft destructor deletes its flight plan (if it has one).

The last waypoint is a place holder only.  I called mine
<WPT><NAME>"EOF"</NAME></WPT>.
2004-05-15 09:07:55 +00:00
ehofman
6a08c79fcc David Culp:
I added some things to the AI stuff to improve the AIThermal processing.
Before, all the thermals were processed in order, and the last one overwrote
the prior one.  Now, only the data from the nearest thermal is kept.  This
way a tile can be populated with many thermals, and (as long as they have the
same diameter) the one nearest the airplane correctly takes effect.  This
will make us ready for the next step, "auto-thermaling", where FlightGear's
tile manager can cover a tile with thermals, and set the thermal strength
based on land-use type.

I moved the enumerated object_type to the base class.  When an AI object is
created it now sets the _otype variable in the base class.  This lets the AI
manager find out what kind of AI object it is dealing with, using the base
pointer.  I also added a function isa() to the base class, so the manager can
process objects differently based on their type.

The AI manager now sends AIThermal processing to a different function, where
only the data from the nearest thermal is kept.  After the manager processes
all the AI objects, then the results from the nearest thermal are applied to
wind-from-down.
2004-03-07 12:08:46 +00:00
ehofman
250ccf7bff Put the Thermal and Storm support code back in 2004-03-03 20:33:08 +00:00
ehofman
85a1e5cc98 David Culp:
Here's a new batch of AI code which includes a working radar instrument.

I put the radar calculations into the existing AIAircraft class.  It was
easier that way, and it can always be migrated out later if we have to.
Every tenth sim cycle the AIManager makes a copy of the current user state
information.  When the AIAircraft updates it uses this information to
calculate the radar numbers.  It calculates:

1) bearing from user to target
2) range to target in nautical miles
3) "horizontal offset" to target.  This is the angle from the nose to the
   target, in degrees, from -180 to 180.  This will be useful later for a HUD.
4) elevation, in degrees (vertical angle from user's position to target
   position)
5) vertical offset, in degrees (this is elevation corrected for user's pitch)
6) rdot (range rate in knots, note:  not working yet, so I commented it out)

and three items used by the radar instrument to place the "blip"

7) y_shift, in nautical miles
8) x_shift, in nautical miles
9) rotation, in degrees

The radar instrument uses the above three items, and applies a scale factor to
the x-shift and y-shift in order to match the instrument's scale.  Changing
the display scale can be done entirely in the XML code for the instrument.
Right now it's set up only to display a 40 mile scale.

The radar is an AWACS view, which is not very realistic, but it is useful and
demonstrates the technology.  With just a little more work I can get a HUD
marker.  All I need to do there is make a bank angle adjustment to the
current values.
2004-02-27 10:20:17 +00:00
ehofman
4c01e0e76a Tidy up the code a bit 2003-12-21 13:42:01 +00:00
ehofman
cd0c447b43 Add David Culp's AI model manager code which is derived from David Luff's AI/ATC code. 2003-11-28 15:48:05 +00:00