1
0
Fork 0
flightgear/src/Main/views.cxx

379 lines
11 KiB
C++
Raw Normal View History

// views.cxx -- data structures and routines for managing and view
// parameters.
//
// Written by Curtis Olson, started August 1997.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
1997-08-27 21:31:17 +00:00
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
1997-08-27 21:31:17 +00:00
#include <ssg.h> // plib include
1998-10-17 01:33:52 +00:00
#include <Aircraft/aircraft.hxx>
1998-11-09 23:39:22 +00:00
#include <Cockpit/panel.hxx>
#include <Debug/logstream.hxx>
#include <Include/fg_constants.h>
#include <Math/mat3.h>
1998-10-16 00:51:46 +00:00
#include <Math/point3d.hxx>
#include <Math/polar3d.hxx>
#include <Math/vector.hxx>
#include <Scenery/scenery.hxx>
#include <Time/fg_time.hxx>
1997-08-27 21:31:17 +00:00
#include "options.hxx"
#include "views.hxx"
// temporary (hopefully) hack
static int panel_hist = 0;
// This is a record containing current view parameters for the current
// aircraft position
FGView pilot_view;
// This is a record containing current view parameters for the current
// view position
FGView current_view;
// Constructor
FGView::FGView( void ) {
}
// Initialize a view structure
void FGView::Init( void ) {
FG_LOG( FG_VIEW, FG_INFO, "Initializing View parameters" );
view_offset = 0.0;
goal_view_offset = 0.0;
1998-05-27 02:24:05 +00:00
winWidth = current_options.get_xsize();
winHeight = current_options.get_ysize();
if ( ! current_options.get_panel_status() ) {
current_view.set_win_ratio( (GLfloat) winWidth / (GLfloat) winHeight );
} else {
current_view.set_win_ratio( (GLfloat) winWidth /
((GLfloat) (winHeight)*0.4232) );
}
1999-09-28 22:43:52 +00:00
// This never changes -- NHV
sgLARC_TO_SSG[0][0] = 0.0;
sgLARC_TO_SSG[0][1] = 1.0;
sgLARC_TO_SSG[0][2] = -0.0;
sgLARC_TO_SSG[0][3] = 0.0;
1999-09-28 22:43:52 +00:00
sgLARC_TO_SSG[1][0] = 0.0;
sgLARC_TO_SSG[1][1] = 0.0;
sgLARC_TO_SSG[1][2] = 1.0;
sgLARC_TO_SSG[1][3] = 0.0;
1998-05-27 02:24:05 +00:00
1999-09-28 22:43:52 +00:00
sgLARC_TO_SSG[2][0] = 1.0;
sgLARC_TO_SSG[2][1] = -0.0;
sgLARC_TO_SSG[2][2] = 0.0;
sgLARC_TO_SSG[2][3] = 0.0;
sgLARC_TO_SSG[3][0] = 0.0;
sgLARC_TO_SSG[3][1] = 0.0;
sgLARC_TO_SSG[3][2] = 0.0;
sgLARC_TO_SSG[3][3] = 1.0;
force_update_fov_math();
1997-08-27 21:31:17 +00:00
}
// Update the view volume, position, and orientation
void FGView::UpdateViewParams( const FGInterface& f ) {
UpdateViewMath(f);
1998-11-09 23:39:22 +00:00
if ((current_options.get_panel_status() != panel_hist) && (current_options.get_panel_status()))
{
FGPanel::OurPanel->ReInit( 0, 0, 1024, 768);
}
1998-11-09 23:39:22 +00:00
if ( ! current_options.get_panel_status() ) {
xglViewport(0, 0 , (GLint)(winWidth), (GLint)(winHeight) );
1998-11-09 23:39:22 +00:00
} else {
xglViewport(0, (GLint)((winHeight)*0.5768), (GLint)(winWidth),
(GLint)((winHeight)*0.4232) );
1998-11-09 23:39:22 +00:00
}
1998-11-09 23:39:22 +00:00
panel_hist = current_options.get_panel_status();
}
1999-09-28 22:43:52 +00:00
// convert sgMat4 to MAT3 and print
static void print_sgMat4( sgMat4 &in) {
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = in[i][j];
}
}
MAT3print( print, stdout);
}
// convert convert MAT3 to sgMat4
static void MAT3mat_To_sgMat4( MAT3mat &in, sgMat4 &out ) {
out[0][0] = in[0][0];
out[0][1] = in[0][1];
out[0][2] = in[0][2];
out[0][3] = in[0][3];
out[1][0] = in[1][0];
out[1][1] = in[1][1];
out[1][2] = in[1][2];
out[1][3] = in[1][3];
out[2][0] = in[2][0];
out[2][1] = in[2][1];
out[2][2] = in[2][2];
out[2][3] = in[2][3];
out[3][0] = in[3][0];
out[3][1] = in[3][1];
out[3][2] = in[3][2];
out[3][3] = in[3][3];
}
// Update the view parameters
void FGView::UpdateViewMath( const FGInterface& f ) {
1998-10-16 00:51:46 +00:00
Point3D p;
sgVec3 v0, minus_z;
MAT3vec vec, forward;
1997-08-27 21:31:17 +00:00
MAT3mat R, TMP, UP, LOCAL, VIEW;
sgMat4 sgTMP;
if ( update_fov ) {
1999-09-28 22:43:52 +00:00
ssgSetFOV( current_options.get_fov(),
current_options.get_fov() * win_ratio );
1998-09-08 15:04:33 +00:00
update_fov = false;
1998-05-27 02:24:05 +00:00
}
1998-10-16 00:51:46 +00:00
scenery.center = scenery.next_center;
1998-02-20 00:16:14 +00:00
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
// scenery.center.y, scenery.center.z);
// calculate the cartesion coords of the current lat/lon/0 elev
p = Point3D( f.get_Longitude(),
f.get_Lat_geocentric(),
f.get_Sea_level_radius() * FEET_TO_METER );
1998-10-16 00:51:46 +00:00
cur_zero_elev = fgPolarToCart3d(p) - scenery.center;
1997-12-17 23:13:34 +00:00
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( f.get_Altitude() * FEET_TO_METER >
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
p.setz( p.radius() + f.get_Altitude() * FEET_TO_METER );
} else {
1998-10-16 00:51:46 +00:00
p.setz( p.radius() + scenery.cur_elev + 0.5 * METER_TO_FEET );
}
abs_view_pos = fgPolarToCart3d(p);
1998-10-16 00:51:46 +00:00
view_pos = abs_view_pos - scenery.center;
1997-08-27 21:31:17 +00:00
FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos );
1997-08-27 21:31:17 +00:00
1999-09-28 22:43:52 +00:00
// code to calculate LOCAL matrix calculated from Phi, Theta, and
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
// flight model
1999-09-28 22:43:52 +00:00
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, f.get_Phi());
// cout << "Roll matrix" << endl;
// MAT3print(R, stdout);
1999-09-28 22:43:52 +00:00
sgVec3 sgrollvec;
sgSetVec3( sgrollvec, 0.0, 0.0, 1.0 );
sgMat4 sgPHI; // roll
sgMakeRotMat4( sgPHI, f.get_Phi() * RAD_TO_DEG, sgrollvec );
1999-09-28 22:43:52 +00:00
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
MAT3rotate(TMP, vec, f.get_Theta());
// cout << "Pitch matrix" << endl;;
// MAT3print(TMP, stdout);
MAT3mult(R, R, TMP);
// cout << "tmp rotation matrix, R:" << endl;;
// MAT3print(R, stdout);
1999-09-28 22:43:52 +00:00
sgVec3 sgpitchvec;
sgSetVec3( sgpitchvec, 0.0, 1.0, 0.0 );
sgMat4 sgTHETA; // pitch
sgMakeRotMat4( sgTHETA, f.get_Theta() * RAD_TO_DEG,
sgpitchvec );
1999-09-28 22:43:52 +00:00
sgMat4 sgROT;
sgMultMat4( sgROT, sgPHI, sgTHETA );
1997-08-27 21:31:17 +00:00
1999-09-28 22:43:52 +00:00
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3rotate(TMP, vec, -f.get_Psi());
// cout << "Yaw matrix" << endl;
// MAT3print(TMP, stdout);
MAT3mult(LOCAL, R, TMP);
// cout << "LOCAL matrix:" << endl;
// MAT3print(LOCAL, stdout);
sgVec3 sgyawvec;
sgSetVec3( sgyawvec, 1.0, 0.0, 0.0 );
sgMat4 sgPSI; // pitch
sgMakeRotMat4( sgPSI, -f.get_Psi() * RAD_TO_DEG, sgyawvec );
sgMultMat4( sgLOCAL, sgROT, sgPSI );
// cout << "sgLOCAL matrix" << endl;
// print_sgMat4( sgLOCAL );
// Derive the local UP transformation matrix based on *geodetic*
// coordinates
1997-08-27 21:31:17 +00:00
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, f.get_Longitude()); // R = rotate about Z axis
// printf("Longitude matrix\n");
// MAT3print(R, stdout);
1997-08-27 21:31:17 +00:00
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
MAT3mult_vec(vec, vec, R);
MAT3rotate(TMP, vec, -f.get_Latitude()); // TMP = rotate about X axis
// printf("Latitude matrix\n");
// MAT3print(TMP, stdout);
1997-08-27 21:31:17 +00:00
MAT3mult(UP, R, TMP);
1999-06-18 16:12:17 +00:00
// cout << "Local up matrix" << endl;;
// MAT3print(UP, stdout);
1997-08-27 21:31:17 +00:00
1999-06-18 16:12:17 +00:00
sgMakeRotMat4( sgUP,
f.get_Longitude() * RAD_TO_DEG,
1999-06-18 16:12:17 +00:00
0.0,
-f.get_Latitude() * RAD_TO_DEG );
1999-06-18 16:12:17 +00:00
/*
1999-09-28 22:43:52 +00:00
cout << "FG derived UP matrix using sg routines" << endl;
1999-06-18 16:12:17 +00:00
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
1999-09-28 22:43:52 +00:00
print[i][j] = sgUP[i][j];
}
1999-06-18 16:12:17 +00:00
}
MAT3print( print, stdout);
*/
sgSetVec3( local_up, 1.0, 0.0, 0.0 );
sgXformVec3( local_up, sgUP );
// cout << "Local Up = " << local_up[0] << "," << local_up[1] << ","
// << local_up[2] << endl;
1997-08-27 21:31:17 +00:00
// Alternative method to Derive local up vector based on
// *geodetic* coordinates
// alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
// printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
// alt_up.x, alt_up.y, alt_up.z);
1997-08-27 21:31:17 +00:00
// Calculate the VIEW matrix
1997-08-27 21:31:17 +00:00
MAT3mult(VIEW, LOCAL, UP);
// cout << "VIEW matrix" << endl;;
// MAT3print(VIEW, stdout);
1999-06-18 16:12:17 +00:00
sgMat4 sgTMP2;
1999-06-19 04:48:07 +00:00
sgMultMat4( sgTMP, sgLOCAL, sgUP );
// generate the sg view up vector
sgVec3 vec1;
sgSetVec3( vec1, 1.0, 0.0, 0.0 );
sgXformVec3( sgview_up, vec1, sgTMP );
// generate the view offset matrix
sgMakeRotMat4( sgVIEW_OFFSET, view_offset * RAD_TO_DEG, sgview_up );
1999-09-28 22:43:52 +00:00
// cout << "sgVIEW_OFFSET matrix" << endl;
// print_sgMat4( sgVIEW_OFFSET );
sgMultMat4( sgTMP2, sgTMP, sgVIEW_OFFSET );
sgMultMat4( sgVIEW_ROT, sgLARC_TO_SSG, sgTMP2 );
sgMakeTransMat4( sgTRANS, view_pos.x(), view_pos.y(), view_pos.z() );
sgMultMat4( sgVIEW, sgVIEW_ROT, sgTRANS );
// FGMat4Wrapper tmp;
// sgCopyMat4( tmp.m, sgVIEW );
// follow.push_back( tmp );
1999-06-19 04:48:07 +00:00
// generate the current up, forward, and fwrd-view vectors
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3mult_vec(view_up, vec, VIEW);
/*
1999-06-18 16:12:17 +00:00
cout << "FG derived VIEW matrix using sg routines" << endl;
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = sgVIEW[i][j];
}
}
MAT3print( print, stdout);
*/
1997-08-27 21:31:17 +00:00
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3mult_vec(forward, vec, VIEW);
// printf( "Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1],
// forward[2]);
1997-08-27 21:31:17 +00:00
MAT3rotate(TMP, view_up, view_offset);
MAT3mult_vec(view_forward, forward, TMP);
1997-08-27 21:31:17 +00:00
// make a vector to the current view position
sgSetVec3( v0, view_pos.x(), view_pos.y(), view_pos.z() );
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
sgSetVec3( minus_z, 0.0, 0.0, -1.0 );
sgmap_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
sgNormalizeVec3(surface_south);
// cout << "Surface direction directly south " << surface_south[0] << ","
// << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
sgMakeRotMat4( sgTMP, FG_PI_2 * RAD_TO_DEG, sgview_up );
// cout << "sgMat4 sgTMP" << endl;
// print_sgMat4( sgTMP );
sgXformVec3(surface_east, surface_south, sgTMP);
// cout << "Surface direction directly east" << surface_east[0] << ","
// << surface_east[1] << "," << surface_east[2] << endl;
// cout << "Should be close to zero = "
// << sgScalarProductVec3(surface_south, surface_east) << endl;
}
// Destructor
FGView::~FGView( void ) {
1997-08-27 21:31:17 +00:00
}