1
0
Fork 0
flightgear/src/Main/views.cxx

656 lines
20 KiB
C++
Raw Normal View History

// views.cxx -- data structures and routines for managing and view
// parameters.
//
// Written by Curtis Olson, started August 1997.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
1997-08-27 21:31:17 +00:00
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
1997-08-27 21:31:17 +00:00
#include <ssg.h> // plib include
1998-10-17 01:33:52 +00:00
#include <Aircraft/aircraft.hxx>
1998-11-09 23:39:22 +00:00
#include <Cockpit/panel.hxx>
#include <Debug/logstream.hxx>
#include <Include/fg_constants.h>
#include <Math/mat3.h>
1998-10-16 00:51:46 +00:00
#include <Math/point3d.hxx>
#include <Math/polar3d.hxx>
#include <Math/vector.hxx>
#include <Scenery/scenery.hxx>
#include <Time/fg_time.hxx>
1997-08-27 21:31:17 +00:00
#include "options.hxx"
#include "views.hxx"
// Define following to extract various vectors directly
// from matrices we have allready computed
// rather then performing 'textbook algebra' to rederive them
// Norman Vine -- nhv@yahoo.com
// #define FG_VIEW_INLINE_OPTIMIZATIONS
// temporary (hopefully) hack
static int panel_hist = 0;
// specify code paths ... these are done as variable rather than
// #define's because down the road we may want to choose between them
// on the fly for different flight models ... this way magic carpet
// and external modes wouldn't need to recreate the LaRCsim matrices
// themselves.
static const bool use_larcsim_local_to_body = false;
// This is a record containing current view parameters for the current
// aircraft position
FGView pilot_view;
// This is a record containing current view parameters for the current
// view position
FGView current_view;
// Constructor
FGView::FGView( void ) {
}
// Initialize a view structure
void FGView::Init( void ) {
FG_LOG( FG_VIEW, FG_INFO, "Initializing View parameters" );
view_offset = 0.0;
goal_view_offset = 0.0;
1998-05-27 02:24:05 +00:00
winWidth = current_options.get_xsize();
winHeight = current_options.get_ysize();
if ( ! current_options.get_panel_status() ) {
current_view.set_win_ratio( (GLfloat) winWidth / (GLfloat) winHeight );
} else {
current_view.set_win_ratio( (GLfloat) winWidth /
((GLfloat) (winHeight)*0.4232) );
}
force_update_fov_math();
1998-05-27 02:24:05 +00:00
}
// Update the field of view coefficients
void FGView::UpdateFOV( const fgOPTIONS& o ) {
ssgSetFOV( o.get_fov(), 0.0 );
double fov, theta_x, theta_y;
fov = o.get_fov();
1998-05-27 02:24:05 +00:00
// printf("win_ratio = %.2f\n", win_ratio);
// calculate sin() and cos() of fov / 2 in X direction;
theta_x = (fov * win_ratio * DEG_TO_RAD) / 2.0;
// printf("theta_x = %.2f\n", theta_x);
sin_fov_x = sin(theta_x);
cos_fov_x = cos(theta_x);
1998-09-08 15:04:33 +00:00
slope_x = -cos_fov_x / sin_fov_x;
// printf("slope_x = %.2f\n", slope_x);
// fov_x_clip and fov_y_clip convoluted algebraic simplification
// see code executed in tilemgr.cxx when USE_FAST_FOV_CLIP not
// defined Norman Vine -- nhv@yahoo.com
1998-09-08 15:04:33 +00:00
#if defined( USE_FAST_FOV_CLIP )
fov_x_clip = slope_x*cos_fov_x - sin_fov_x;
#endif // defined( USE_FAST_FOV_CLIP )
// calculate sin() and cos() of fov / 2 in Y direction;
theta_y = (fov * DEG_TO_RAD) / 2.0;
// printf("theta_y = %.2f\n", theta_y);
sin_fov_y = sin(theta_y);
cos_fov_y = cos(theta_y);
slope_y = cos_fov_y / sin_fov_y;
// printf("slope_y = %.2f\n", slope_y);
1998-09-08 15:04:33 +00:00
#if defined( USE_FAST_FOV_CLIP )
fov_y_clip = -(slope_y*cos_fov_y + sin_fov_y);
#endif // defined( USE_FAST_FOV_CLIP )
1997-08-27 21:31:17 +00:00
}
// Update the view volume, position, and orientation
void FGView::UpdateViewParams( const FGInterface& f ) {
UpdateViewMath(f);
1998-11-09 23:39:22 +00:00
if ((current_options.get_panel_status() != panel_hist) && (current_options.get_panel_status()))
{
FGPanel::OurPanel->ReInit( 0, 0, 1024, 768);
}
1998-11-09 23:39:22 +00:00
if ( ! current_options.get_panel_status() ) {
xglViewport(0, 0 , (GLint)(winWidth), (GLint)(winHeight) );
1998-11-09 23:39:22 +00:00
} else {
xglViewport(0, (GLint)((winHeight)*0.5768), (GLint)(winWidth),
(GLint)((winHeight)*0.4232) );
1998-11-09 23:39:22 +00:00
}
1998-11-09 23:39:22 +00:00
panel_hist = current_options.get_panel_status();
}
void getRotMatrix(double* out, MAT3vec vec, double radians)
{
/* This function contributed by Erich Boleyn (erich@uruk.org) */
/* This function used from the Mesa OpenGL code (matrix.c) */
double s, c; // mag,
double vx, vy, vz, xy, yz, zx, xs, ys, zs, one_c; //, xx, yy, zz
MAT3identity(out);
s = sin(radians);
c = cos(radians);
// mag = getMagnitude();
vx = vec[0];
vy = vec[1];
vz = vec[2];
#define M(row,col) out[row*4 + col]
/*
* Arbitrary axis rotation matrix.
*
* This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
* like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
* (which is about the X-axis), and the two composite transforms
* Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
* from the arbitrary axis to the X-axis then back. They are
* all elementary rotations.
*
* Rz' is a rotation about the Z-axis, to bring the axis vector
* into the x-z plane. Then Ry' is applied, rotating about the
* Y-axis to bring the axis vector parallel with the X-axis. The
* rotation about the X-axis is then performed. Ry and Rz are
* simply the respective inverse transforms to bring the arbitrary
* axis back to it's original orientation. The first transforms
* Rz' and Ry' are considered inverses, since the data from the
* arbitrary axis gives you info on how to get to it, not how
* to get away from it, and an inverse must be applied.
*
* The basic calculation used is to recognize that the arbitrary
* axis vector (x, y, z), since it is of unit length, actually
* represents the sines and cosines of the angles to rotate the
* X-axis to the same orientation, with theta being the angle about
* Z and phi the angle about Y (in the order described above)
* as follows:
*
* cos ( theta ) = x / sqrt ( 1 - z^2 )
* sin ( theta ) = y / sqrt ( 1 - z^2 )
*
* cos ( phi ) = sqrt ( 1 - z^2 )
* sin ( phi ) = z
*
* Note that cos ( phi ) can further be inserted to the above
* formulas:
*
* cos ( theta ) = x / cos ( phi )
* sin ( theta ) = y / cos ( phi )
*
* ...etc. Because of those relations and the standard trigonometric
* relations, it is pssible to reduce the transforms down to what
* is used below. It may be that any primary axis chosen will give the
* same results (modulo a sign convention) using thie method.
*
* Particularly nice is to notice that all divisions that might
* have caused trouble when parallel to certain planes or
* axis go away with care paid to reducing the expressions.
* After checking, it does perform correctly under all cases, since
* in all the cases of division where the denominator would have
* been zero, the numerator would have been zero as well, giving
* the expected result.
*/
one_c = 1.0F - c;
// xx = vx * vx;
// yy = vy * vy;
// zz = vz * vz;
// xy = vx * vy;
// yz = vy * vz;
// zx = vz * vx;
M(0,0) = (one_c * vx * vx) + c;
xs = vx * s;
yz = vy * vz * one_c;
M(1,2) = yz + xs;
M(2,1) = yz - xs;
M(1,1) = (one_c * vy * vy) + c;
ys = vy * s;
zx = vz * vx * one_c;
M(0,2) = zx - ys;
M(2,0) = zx + ys;
M(2,2) = (one_c * vz *vz) + c;
zs = vz * s;
xy = vx * vy * one_c;
M(0,1) = xy + zs;
M(1,0) = xy - zs;
// M(0,0) = (one_c * xx) + c;
// M(1,0) = (one_c * xy) - zs;
// M(2,0) = (one_c * zx) + ys;
// M(0,1) = (one_c * xy) + zs;
// M(1,1) = (one_c * yy) + c;
// M(2,1) = (one_c * yz) - xs;
// M(0,2) = (one_c * zx) - ys;
// M(1,2) = (one_c * yz) + xs;
// M(2,2) = (one_c * zz) + c;
#undef M
}
// Update the view parameters
void FGView::UpdateViewMath( const FGInterface& f ) {
1998-10-16 00:51:46 +00:00
Point3D p;
MAT3vec vec, forward, v0, minus_z;
1997-08-27 21:31:17 +00:00
MAT3mat R, TMP, UP, LOCAL, VIEW;
1998-05-27 02:24:05 +00:00
double ntmp;
if ( update_fov ) {
1998-05-27 02:24:05 +00:00
// printf("Updating fov\n");
UpdateFOV( current_options );
1998-09-08 15:04:33 +00:00
update_fov = false;
1998-05-27 02:24:05 +00:00
}
1998-10-16 00:51:46 +00:00
scenery.center = scenery.next_center;
1998-02-20 00:16:14 +00:00
#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
// scenery.center.y, scenery.center.z);
// calculate the cartesion coords of the current lat/lon/0 elev
p = Point3D( f.get_Longitude(),
f.get_Lat_geocentric(),
f.get_Sea_level_radius() * FEET_TO_METER );
1998-10-16 00:51:46 +00:00
cur_zero_elev = fgPolarToCart3d(p) - scenery.center;
1997-12-17 23:13:34 +00:00
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( f.get_Altitude() * FEET_TO_METER >
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
p.setz( p.radius() + f.get_Altitude() * FEET_TO_METER );
} else {
1998-10-16 00:51:46 +00:00
p.setz( p.radius() + scenery.cur_elev + 0.5 * METER_TO_FEET );
}
abs_view_pos = fgPolarToCart3d(p);
#else // FG_VIEW_INLINE_OPTIMIZATIONS
double tmp_radius = f.get_Sea_level_radius() * FEET_TO_METER;
double tmp = f.get_cos_lat_geocentric() * tmp_radius;
cur_zero_elev.setx(f.get_cos_longitude()*tmp - scenery.center.x());
cur_zero_elev.sety(f.get_sin_longitude()*tmp - scenery.center.y());
cur_zero_elev.setz(f.get_sin_lat_geocentric()*tmp_radius - scenery.center.z());
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( f.get_Altitude() * FEET_TO_METER >
(scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
tmp_radius += f.get_Altitude() * FEET_TO_METER;
} else {
tmp_radius += scenery.cur_elev + 0.5 * METER_TO_FEET ;
}
tmp = f.get_cos_lat_geocentric() * tmp_radius;
abs_view_pos.setx(f.get_cos_longitude()*tmp);
abs_view_pos.sety(f.get_sin_longitude()*tmp);
abs_view_pos.setz(f.get_sin_lat_geocentric()*tmp_radius);
#endif // FG_VIEW_INLINE_OPTIMIZATIONS
1998-10-16 00:51:46 +00:00
view_pos = abs_view_pos - scenery.center;
1997-08-27 21:31:17 +00:00
FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos );
1997-08-27 21:31:17 +00:00
// Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw)
// from FG_T_local_to_body[3][3]
if ( use_larcsim_local_to_body ) {
// Question: Why is the LaRCsim matrix arranged so differently
// than the one we need???
// Answer (I think): The LaRCsim matrix is generated in a
// different reference frame than we've set up for our world
LOCAL[0][0] = f.get_T_local_to_body_33();
LOCAL[0][1] = -f.get_T_local_to_body_32();
LOCAL[0][2] = -f.get_T_local_to_body_31();
LOCAL[0][3] = 0.0;
LOCAL[1][0] = -f.get_T_local_to_body_23();
LOCAL[1][1] = f.get_T_local_to_body_22();
LOCAL[1][2] = f.get_T_local_to_body_21();
LOCAL[1][3] = 0.0;
LOCAL[2][0] = -f.get_T_local_to_body_13();
LOCAL[2][1] = f.get_T_local_to_body_12();
LOCAL[2][2] = f.get_T_local_to_body_11();
LOCAL[2][3] = 0.0;
LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0;
LOCAL[3][3] = 1.0;
// printf("LaRCsim LOCAL matrix\n");
// MAT3print(LOCAL, stdout);
} else {
1999-06-19 04:48:07 +00:00
// calculate the transformation matrix to go from LaRCsim to ssg
sgVec3 vec1;
sgSetVec3( vec1, 0.0, 1.0, 0.0 );
sgMat4 mat1;
sgMakeRotMat4( mat1, 90, vec1 );
sgVec3 vec2;
sgSetVec3( vec2, 1.0, 0.0, 0.0 );
sgMat4 mat2;
sgMakeRotMat4( mat2, 90, vec2 );
sgMultMat4( sgLARC_TO_SSG, mat1, mat2 );
/*
1999-06-19 04:48:07 +00:00
cout << "LaRCsim to SSG:" << endl;
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = sgLARC_TO_SSG[i][j];
}
}
MAT3print( print, stdout);
*/
1999-06-19 04:48:07 +00:00
// code to calculate LOCAL matrix calculated from Phi, Theta, and
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
// flight model
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, f.get_Phi());
1999-06-19 04:48:07 +00:00
// cout << "Roll matrix" << endl;
// MAT3print(R, stdout);
sgVec3 sgrollvec;
sgSetVec3( sgrollvec, 0.0, 0.0, 1.0 );
sgMat4 sgPHI; // roll
sgMakeRotMat4( sgPHI, f.get_Phi() * RAD_TO_DEG, sgrollvec );
1999-06-19 04:48:07 +00:00
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
MAT3rotate(TMP, vec, f.get_Theta());
1999-06-19 04:48:07 +00:00
// cout << "Pitch matrix" << endl;;
// MAT3print(TMP, stdout);
MAT3mult(R, R, TMP);
1999-06-19 04:48:07 +00:00
// cout << "tmp rotation matrix, R:" << endl;;
// MAT3print(R, stdout);
sgVec3 sgpitchvec;
sgSetVec3( sgpitchvec, 0.0, 1.0, 0.0 );
sgMat4 sgTHETA; // pitch
sgMakeRotMat4( sgTHETA, f.get_Theta() * RAD_TO_DEG,
1999-06-19 04:48:07 +00:00
sgpitchvec );
sgMat4 sgROT;
sgMultMat4( sgROT, sgPHI, sgTHETA );
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3rotate(TMP, vec, -f.get_Psi());
1999-06-19 04:48:07 +00:00
// cout << "Yaw matrix" << endl;
// MAT3print(TMP, stdout);
MAT3mult(LOCAL, R, TMP);
1999-06-19 04:48:07 +00:00
// cout << "LOCAL matrix:" << endl;
// MAT3print(LOCAL, stdout);
1999-06-19 04:48:07 +00:00
sgVec3 sgyawvec;
sgSetVec3( sgyawvec, 1.0, 0.0, 0.0 );
sgMat4 sgPSI; // pitch
sgMakeRotMat4( sgPSI, -f.get_Psi() * RAD_TO_DEG, sgyawvec );
1999-06-19 04:48:07 +00:00
sgMultMat4( sgLOCAL, sgROT, sgPSI );
1999-06-18 16:12:17 +00:00
/*
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = sgLOCAL[i][j];
}
}
MAT3print( print, stdout);
*/
} // if ( use_larcsim_local_to_body )
1997-08-27 21:31:17 +00:00
#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
// Derive the local UP transformation matrix based on *geodetic*
// coordinates
1997-08-27 21:31:17 +00:00
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3rotate(R, vec, f.get_Longitude()); // R = rotate about Z axis
// printf("Longitude matrix\n");
// MAT3print(R, stdout);
1997-08-27 21:31:17 +00:00
MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
MAT3mult_vec(vec, vec, R);
MAT3rotate(TMP, vec, -f.get_Latitude()); // TMP = rotate about X axis
// printf("Latitude matrix\n");
// MAT3print(TMP, stdout);
1997-08-27 21:31:17 +00:00
MAT3mult(UP, R, TMP);
1999-06-18 16:12:17 +00:00
// cout << "Local up matrix" << endl;;
// MAT3print(UP, stdout);
1997-08-27 21:31:17 +00:00
1999-06-18 16:12:17 +00:00
sgMakeRotMat4( sgUP,
f.get_Longitude() * RAD_TO_DEG,
1999-06-18 16:12:17 +00:00
0.0,
-f.get_Latitude() * RAD_TO_DEG );
1999-06-18 16:12:17 +00:00
/*
cout << "FG derived UP matrix using sg routines" << endl;
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = sgUP[i][j];
}
}
MAT3print( print, stdout);
*/
MAT3_SET_VEC(local_up, 1.0, 0.0, 0.0);
MAT3mult_vec(local_up, local_up, UP);
1997-08-27 21:31:17 +00:00
// printf( "Local Up = (%.4f, %.4f, %.4f)\n",
// local_up[0], local_up[1], local_up[2]);
1997-08-27 21:31:17 +00:00
// Alternative method to Derive local up vector based on
// *geodetic* coordinates
// alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
// printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
// alt_up.x, alt_up.y, alt_up.z);
1997-08-27 21:31:17 +00:00
// Calculate the VIEW matrix
1997-08-27 21:31:17 +00:00
MAT3mult(VIEW, LOCAL, UP);
// cout << "VIEW matrix" << endl;;
// MAT3print(VIEW, stdout);
1999-06-18 16:12:17 +00:00
sgMat4 sgTMP, sgTMP2;
1999-06-19 04:48:07 +00:00
sgMultMat4( sgTMP, sgLOCAL, sgUP );
// generate the sg view up vector
sgVec3 vec1;
sgSetVec3( vec1, 1.0, 0.0, 0.0 );
sgXformVec3( sgview_up, vec1, sgTMP );
// generate the view offset matrix
sgMakeRotMat4( sgVIEW_OFFSET, view_offset * RAD_TO_DEG, sgview_up );
/*
cout << "sg VIEW_OFFSET matrix" << endl;
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = sgVIEW_OFFSET[i][j];
}
}
MAT3print( print, stdout);
*/
sgMultMat4( sgTMP2, sgTMP, sgVIEW_OFFSET );
sgMultMat4( sgVIEW_ROT, sgLARC_TO_SSG, sgTMP2 );
sgMakeTransMat4( sgTRANS, view_pos.x(), view_pos.y(), view_pos.z() );
sgMultMat4( sgVIEW, sgVIEW_ROT, sgTRANS );
// FGMat4Wrapper tmp;
// sgCopyMat4( tmp.m, sgVIEW );
// follow.push_back( tmp );
1999-06-19 04:48:07 +00:00
// generate the current up, forward, and fwrd-view vectors
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3mult_vec(view_up, vec, VIEW);
/*
1999-06-18 16:12:17 +00:00
cout << "FG derived VIEW matrix using sg routines" << endl;
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
print[i][j] = sgVIEW[i][j];
}
}
MAT3print( print, stdout);
*/
1997-08-27 21:31:17 +00:00
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3mult_vec(forward, vec, VIEW);
// printf( "Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1],
// forward[2]);
1997-08-27 21:31:17 +00:00
MAT3rotate(TMP, view_up, view_offset);
MAT3mult_vec(view_forward, forward, TMP);
1997-08-27 21:31:17 +00:00
// make a vector to the current view position
1998-10-16 00:51:46 +00:00
MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
MAT3_NORMALIZE_VEC(surface_south, ntmp);
// printf( "Surface direction directly south %.2f %.2f %.2f\n",
// surface_south[0], surface_south[1], surface_south[2]);
// now calculate the surface east vector
MAT3rotate(TMP, view_up, FG_PI_2);
MAT3mult_vec(surface_east, surface_south, TMP);
// printf( "Surface direction directly east %.2f %.2f %.2f\n",
// surface_east[0], surface_east[1], surface_east[2]);
// printf( "Should be close to zero = %.2f\n",
// MAT3_DOT_PRODUCT(surface_south, surface_east));
#else // FG_VIEW_INLINE_OPTIMIZATIONS
// // Build spherical to cartesian transform matrix directly
double cos_lat = f.get_cos_latitude(); // cos(-f.get_Latitude());
double sin_lat = -f.get_sin_latitude(); // sin(-f.get_Latitude());
double cos_lon = f.get_cos_longitude(); //cos(f.get_Longitude());
double sin_lon = f.get_sin_longitude(); //sin(f.get_Longitude());
double *mat = (double *)UP;
mat[0] = cos_lat*cos_lon;
mat[1] = cos_lat*sin_lon;
mat[2] = -sin_lat;
mat[3] = 0.0;
mat[4] = -sin_lon;
mat[5] = cos_lon;
mat[6] = 0.0;
mat[7] = 0.0;
mat[8] = sin_lat*cos_lon;
mat[9] = sin_lat*sin_lon;
mat[10] = cos_lat;
mat[11] = mat[12] = mat[13] = mat[14] = 0.0;
mat[15] = 1.0;
MAT3mult(VIEW, LOCAL, UP);
// THESE COULD JUST BE POINTERS !!!
MAT3_SET_VEC(local_up, mat[0], mat[1], mat[2]);
MAT3_SET_VEC(view_up, VIEW[0][0], VIEW[0][1], VIEW[0][2]);
MAT3_SET_VEC(forward, VIEW[2][0], VIEW[2][1], VIEW[2][2]);
getRotMatrix((double *)TMP, view_up, view_offset);
MAT3mult_vec(view_forward, forward, TMP);
// make a vector to the current view position
MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
MAT3_NORMALIZE_VEC(surface_south, ntmp);
// printf( "Surface direction directly south %.6f %.6f %.6f\n",
// surface_south[0], surface_south[1], surface_south[2]);
// now calculate the surface east vector
getRotMatrix((double *)TMP, view_up, FG_PI_2);
MAT3mult_vec(surface_east, surface_south, TMP);
// printf( "Surface direction directly east %.6f %.6f %.6f\n",
// surface_east[0], surface_east[1], surface_east[2]);
// printf( "Should be close to zero = %.6f\n",
// MAT3_DOT_PRODUCT(surface_south, surface_east));
#endif // !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
}
// Destructor
FGView::~FGView( void ) {
1997-08-27 21:31:17 +00:00
}