1
0
Fork 0
flightgear/src/Instrumentation/wxradar.cxx

786 lines
28 KiB
C++
Raw Normal View History

// Wx Radar background texture
//
// Written by Harald JOHNSEN, started May 2005.
// With major amendments by Vivian MEAZZA May 2007
// Ported to OSG by Tim Moore Jun 2007
//
//
// Copyright (C) 2005 Harald JOHNSEN
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
2006-02-21 01:16:04 +00:00
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
//
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <osg/Array>
#include <osg/Geometry>
#include <osg/Matrixf>
#include <osg/PrimitiveSet>
#include <osg/StateSet>
#include <osgDB/WriteFile>
#include <simgear/constants.h>
#include <simgear/misc/sg_path.hxx>
#include <simgear/environment/visual_enviro.hxx>
#include <simgear/scene/model/model.hxx>
#include <simgear/structure/exception.hxx>
#include <simgear/misc/sg_path.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include <Cockpit/panel.hxx>
#include <Cockpit/hud.hxx>
#include <AIModel/AIBase.hxx>
#include <AIModel/AIManager.hxx>
#include <AIModel/AIBallistic.hxx>
#include "instrument_mgr.hxx"
#include "od_gauge.hxx"
#include "wxradar.hxx"
// texture name to use in 2D and 3D instruments
static const char *odgauge_name = "Aircraft/Instruments/Textures/od_wxradar.rgb";
wxRadarBg::wxRadarBg ( SGPropertyNode *node) :
_name(node->getStringValue("name", "radar")),
_num(node->getIntValue("number", 0)),
_interval(node->getDoubleValue("update-interval-sec", 1.0)),
_time( 0.0 ),
_last_switchKnob( "off" ),
_sim_init_done ( false ),
resultTexture( 0 ),
wxEcho( 0 ),
_odg( 0 )
{
const char *tacan_source = node->getStringValue("tacan-source",
"/instrumentation/tacan");
_Tacan = fgGetNode(tacan_source, true);
}
wxRadarBg::~wxRadarBg ()
{
}
void
wxRadarBg::init ()
{
string branch;
branch = "/instrumentation/" + _name;
_Instrument = fgGetNode(branch.c_str(), _num, true );
_serviceable_node = _Instrument->getNode("serviceable", true);
SGPath tpath(globals->get_fg_root());
tpath.append("Aircraft/Instruments/Textures/wxecho.rgb");
// no mipmap or else alpha will mix with pixels on the border of shapes, ruining the effect
wxEcho = SGLoadTexture2D(tpath.c_str(), false, false);
_Instrument->setFloatValue("trk", 0.0);
_Instrument->setFloatValue("tilt", 0.0);
_Instrument->setStringValue("status","");
// those properties are used by a radar instrument of a MFD
// input switch = OFF | TST | STBY | ON
// input mode = WX | WXA | MAP
// output status = STBY | TEST | WX | WXA | MAP | blank
// input lightning = true | false
// input TRK = +/- n degrees
// input TILT = +/- n degree
// input autotilt = true | false
// input range = n nm (20/40/80)
// input display-mode = arc | rose | map | plan
FGInstrumentMgr *imgr = (FGInstrumentMgr *) globals->get_subsystem("instrumentation");
_odg = (FGODGauge *) imgr->get_subsystem("od_gauge");
_odg->setSize(256);
_ai = (FGAIManager*)globals->get_subsystem("ai_model");
_user_lat_node = fgGetNode("/position/latitude-deg", true);
_user_lon_node = fgGetNode("/position/longitude-deg", true);
_user_alt_node = fgGetNode("/position/altitude-ft", true);
_user_speed_east_fps_node = fgGetNode("/velocities/speed-east-fps", true);
_user_speed_north_fps_node = fgGetNode("/velocities/speed-north-fps", true);
_tacan_serviceable_node = _Tacan->getNode("serviceable", true);
_tacan_distance_node = _Tacan->getNode("indicated-distance-nm", true);
_tacan_name_node = _Tacan->getNode("name", true);
_tacan_bearing_node = _Tacan->getNode("indicated-bearing-true-deg", true);
_tacan_in_range_node = _Tacan->getNode("in-range", true);
_radar_mode_control_node = _Instrument->getNode("mode-control", true);
_radar_coverage_node = _Instrument->getNode("limit-deg", true);
_radar_ref_rng_node = _Instrument->getNode("reference-range-nm", true);
_radar_coverage_node->setFloatValue(120);
_radar_ref_rng_node->setDoubleValue(35);
SGPropertyNode *n = _Instrument->getNode("display-controls", true);
_radar_weather_node = n->getNode("WX", true);
_radar_position_node = n->getNode("pos", true);
_radar_data_node = n->getNode("data", true);
_radar_centre_node = n->getNode("centre", true);
_radar_centre_node->setBoolValue(false);
_ai_enabled_node = fgGetNode("/sim/ai/enabled", true);
_x_displacement = 0;
_y_displacement = 0;
_x_sym_displacement = 0;
_y_sym_displacement = 0;
// OSG geometry setup. The polygons for the radar returns will be
// stored in a single Geometry. The geometry will have several
// primitive sets so we can have different kinds of polys and
// choose a different overall color for each set.
radarGeode = new osg::Geode;
osg::StateSet* stateSet = radarGeode->getOrCreateStateSet();
stateSet->setTextureAttributeAndModes(0, wxEcho.get());
osg::Geometry* geom = new osg::Geometry;
geom->setUseDisplayList(false);
// Initially allocate space for 128 quads
osg::Vec2Array* vertices = new osg::Vec2Array;
vertices->setDataVariance(osg::Object::DYNAMIC);
vertices->reserve(128 * 4);
geom->setVertexArray(vertices);
osg::Vec2Array* texCoords = new osg::Vec2Array;
texCoords->setDataVariance(osg::Object::DYNAMIC);
texCoords->reserve(128 * 4);
geom->setTexCoordArray(0, texCoords);
osg::Vec3Array* colors = new osg::Vec3Array;
colors->push_back(osg::Vec3(1.0f, 1.0f, 1.0f)); // color of echos
colors->push_back(osg::Vec3(1.0f, 0.0f, 0.0f)); // arc mask
colors->push_back(osg::Vec3(0.0f, 0.0f, 0.0f)); // rest of mask
geom->setColorBinding(osg::Geometry::BIND_PER_PRIMITIVE_SET);
geom->setColorArray(colors);
osg::PrimitiveSet* pset = new osg::DrawArrays(osg::PrimitiveSet::QUADS);
pset->setDataVariance(osg::Object::DYNAMIC);
geom->addPrimitiveSet(pset);
pset = new osg::DrawArrays(osg::PrimitiveSet::QUADS);
pset->setDataVariance(osg::Object::DYNAMIC);
geom->addPrimitiveSet(pset);
pset = new osg::DrawArrays(osg::PrimitiveSet::TRIANGLES);
pset->setDataVariance(osg::Object::DYNAMIC);
geom->addPrimitiveSet(pset);
geom->setInitialBound(osg::BoundingBox(osg::Vec3f(-256.0f, -256.0f, 0.0f),
osg::Vec3f(256.0f, 256.0f, 0.0f)));
radarGeode->addDrawable(geom);
_odg->allocRT();
// Texture in the 2D panel system
FGTextureManager::addTexture(odgauge_name, _odg->getTexture());
osg::Camera* camera = _odg->getCamera();
camera->addChild(radarGeode.get());
}
// Local coordinates for each echo
const osg::Vec3f echoCoords[4] = {
osg::Vec3f(-.7f, -.7f, 0.0f), osg::Vec3f(.7f, -.7f, 0.0f),
osg::Vec3f(.7f, .7f, 0.0f), osg::Vec3f(-.7f, .7f, 0.0f)
};
const float symbolSize = 1.0f / 8.0f;
const osg::Vec2f echoTexCoords[4] = {
osg::Vec2f(0.0f, 0.0f), osg::Vec2f(symbolSize, 0.0f),
osg::Vec2f(symbolSize, symbolSize), osg::Vec2f(0.0f, symbolSize)
};
// helper
static void
addQuad(osg::Vec2Array* vertices, osg::Vec2Array* texCoords,
const osg::Matrixf& transform, const osg::Vec2f& texBase)
{
for (int i = 0; i < 4; i++) {
const osg::Vec3f coords = transform.preMult(echoCoords[i]);
texCoords->push_back(texBase + echoTexCoords[i]);
vertices->push_back(osg::Vec2f(coords.x(), coords.y()));
}
}
// Rotate by a heading value
static inline
osg::Matrixf wxRotate(float angle)
{
return osg::Matrixf::rotate(angle, 0.0f, 0.0f, -1.0f);
}
void
wxRadarBg::update (double delta_time_sec)
{
if ( ! _sim_init_done ) {
if ( ! fgGetBool("sim/sceneryloaded", false) )
return;
_sim_init_done = true;
}
if ( !_odg || ! _serviceable_node->getBoolValue() ) {
_Instrument->setStringValue("status","");
return;
}
_time += delta_time_sec;
if (_time < _interval)
return;
_time = 0.0;
string switchKnob = _Instrument->getStringValue("switch", "on");
string modeButton = _Instrument->getStringValue("mode", "wx");
bool drawLightning = _Instrument->getBoolValue("lightning", true);
float range_nm = _Instrument->getFloatValue("range", 40.0);
float range_m = range_nm * SG_NM_TO_METER;
_user_speed_east_fps = _user_speed_east_fps_node->getDoubleValue();
_user_speed_north_fps = _user_speed_north_fps_node->getDoubleValue();
if ( _last_switchKnob != switchKnob ) {
// since 3D models don't share textures with the rest of the world
// we must locate them and replace their handle by hand
// only do that when the instrument is turned on
//if (last_switchKnob == "off")
//_odg->set_texture(odgauge_name, resultTexture.get());
_last_switchKnob = switchKnob;
}
_radarEchoBuffer = *sgEnviro.get_radar_echo();
updateRadar();
if ( switchKnob == "off" ) {
_Instrument->setStringValue("status","");
return;
} else if ( switchKnob == "stby" ) {
_Instrument->setStringValue("status","STBY");
return;
} else if ( switchKnob == "tst" ) {
_Instrument->setStringValue("status","TST");
return;
}
// find something interesting to do...
string display_mode = _Instrument->getStringValue("display-mode", "arc");
// pretend we have a scan angle bigger then the FOV
// TODO:check real fov, enlarge if < nn, and do clipping if > mm
const float fovFactor = 1.45f;
float view_heading = get_heading() * SG_DEGREES_TO_RADIANS;
float range = 200.0f / range_nm;
_Instrument->setStringValue("status", modeButton.c_str());
osg::Matrixf centerTrans;
if ( display_mode == "arc" ) {
centerTrans.makeTranslate(0.0f, -180.0f, 0.0f);
range = 2*180.0f / range_nm;
} else if ( display_mode == "map" ) {
view_heading = 0;
if (_radar_centre_node->getBoolValue()) {
_x_displacement =_y_displacement = 0;
} else {
_x_displacement += range * _user_speed_east_fps * SG_FPS_TO_KT
* delta_time_sec / (60*60);
_y_displacement += range * _user_speed_north_fps * SG_FPS_TO_KT
* delta_time_sec / (60*60);
}
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: displacement "
<< _x_displacement << ", "<<_y_displacement
<< " _user_speed_east_fps * SG_FPS_TO_KT "
<< _user_speed_east_fps * SG_FPS_TO_KT
<< " _user_speed_north_fps * SG_FPS_TO_KT "
<< _user_speed_north_fps * SG_FPS_TO_KT
<< " dt " << delta_time_sec
<< " centre " << _radar_centre_node->getBoolValue());
centerTrans.makeTranslate(_x_displacement, _y_displacement, 0.0f);
} else if ( display_mode == "plan" ) {
// no sense I presume
view_heading = 0;
} else {
// rose
view_heading = 0;
}
range /= SG_NM_TO_METER;
list_of_SGWxRadarEcho *radarEcho = &_radarEchoBuffer;
list_of_SGWxRadarEcho::iterator iradarEcho;
const float LWClevel[] = { 0.1f, 0.5f, 2.1f };
float dist = 0;
float size = 0;
osg::Geometry* geom
= static_cast<osg::Geometry*>(radarGeode->getDrawable(0));
osg::Vec2Array* vertices
= static_cast<osg::Vec2Array*>(geom->getVertexArray());
osg::Vec2Array* texCoords
= static_cast<osg::Vec2Array*>(geom->getTexCoordArray(0));
vertices->clear();
texCoords->clear();
// draw the cloud radar echo
bool drawClouds = _radar_weather_node->getBoolValue();
if (drawClouds) {
//we do that in 3 passes, one for each color level
// this is to 'merge' same colors together
for (int level = 0; level <= 2; level++) {
float col = level * symbolSize;
for (iradarEcho = radarEcho->begin(); iradarEcho != radarEcho->end();
++iradarEcho) {
int cloudId = (iradarEcho->cloudId);
bool upgrade = ((cloudId >> 5) & 1);
float lwc = iradarEcho->LWC + (upgrade ? 1.0f : 0.0f);
// skip ns
if (iradarEcho->LWC >= 0.5 && iradarEcho->LWC <= 0.6)
continue;
if (iradarEcho->lightning || lwc < LWClevel[level]
|| iradarEcho->aircraft)
continue;
dist = sgSqrt(iradarEcho->dist);
size = iradarEcho->radius * 2.0;
if ( dist - size > range_m )
continue;
dist *= range;
size *= range;
// Translate echo to proper distance on screen
osg::Matrixf distTrans
= osg::Matrixf::translate(0.0f, dist * range, 0.0f);
// Scale echo
osg::Matrixf scaleEcho = osg::Matrixf::scale(size, size, 1.0f);
// compute the relative angle from the view direction
float angle = calcRelBearing(iradarEcho->bearing, view_heading);
// we will rotate the echo quads, this gives a better rendering
//const float rot_x = cos (view_heading);
//const float rot_y = sin (view_heading);
// and apply a fov factor to simulate a greater scan
// angle
angle *= fovFactor;
// Rotate echo into position, and rotate echo to have
// a constant orientation towards the
// airplane. Compass headings increase in clockwise
// direction, while graphics rotations follow
// right-hand (counter-clockwise) rule.
osg::Matrixf rotEcho = wxRotate(angle);
// use different shapes so the display is less boring
//float row = symbolSize * (float) (4 + (cloudId & 3) );
const osg::Vec2f texBase(col, (symbolSize
* (float) (4 + (cloudId & 3))));
osg::Matrixf m(scaleEcho * distTrans * rotEcho * centerTrans);
addQuad(vertices, texCoords, m, texBase);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: drawing clouds"
<< " ID " << iradarEcho->cloudId
<< " dist" << dist
<< " view_heading" << view_heading / SG_DEGREES_TO_RADIANS
<< " heading " << iradarEcho->heading / SG_DEGREES_TO_RADIANS
<< " angle " << angle / SG_DEGREES_TO_RADIANS);
}
}
}
// draw lightning echos
if ( drawLightning ) {
const osg::Vec2f texBase(3 * symbolSize, 4 * symbolSize);
for (iradarEcho = radarEcho->begin();
iradarEcho != radarEcho->end();
++iradarEcho) {
if (!iradarEcho->lightning)
continue;
float dist = iradarEcho->dist * range;
float angle = calcRelBearing(iradarEcho->bearing, view_heading);
if ( angle > SG_PI )
angle -= 2.0*SG_PI;
if ( angle < - SG_PI )
angle += 2.0*SG_PI;
angle *= fovFactor;
// Rotate the symbol into position without rotating the
// symbol itself
osg::Vec3f trans(0.0f, dist, 0.0f);
trans = wxRotate(angle).preMult(trans);
osg::Matrixf m(osg::Matrixf::scale(symbolSize, symbolSize, 1.0)
* osg::Matrixf::translate(trans) * centerTrans);
addQuad(vertices, texCoords, m, texBase);
}
}
//draw aircraft echoes
if (_radar_position_node->getBoolValue()) {
const osg::Vec2f texBase(3 * symbolSize, 3 * symbolSize);
for (iradarEcho = radarEcho->begin();
iradarEcho != radarEcho->end();
++iradarEcho) {
if (!iradarEcho->aircraft)
continue;
dist = iradarEcho->dist * range;
// calculate relative bearing
float angle = calcRelBearing(iradarEcho->bearing, view_heading);
float limit = _radar_coverage_node->getFloatValue();
if (limit > 180)
limit = 180;
else if (limit < 0)
limit = 0;
// if it's in coverage, draw it
if (angle >= limit * SG_DEGREES_TO_RADIANS
|| angle < -limit * SG_DEGREES_TO_RADIANS)
continue;
size = symbolSize * iradarEcho->radius;
osg::Matrixf m(osg::Matrixf::scale(size, size, 1.0f)
* osg::Matrixf::translate(0.0f, dist, 0.0f)
* wxRotate(angle) * centerTrans);
addQuad(vertices, texCoords, m, texBase);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: drawing AI"
<< " ID " << iradarEcho->cloudId
<< " dist" << dist
<< " view_heading" << view_heading / SG_DEGREES_TO_RADIANS
<< " heading " << iradarEcho->heading / SG_DEGREES_TO_RADIANS
<< " angle " << angle / SG_DEGREES_TO_RADIANS);
}
}
// Draw aircraft data
if (_radar_data_node->getBoolValue()) {
const osg::Vec2f texBase(0, 3 * symbolSize);
for (iradarEcho = radarEcho->begin();
iradarEcho != radarEcho->end();
++iradarEcho) {
if (!iradarEcho->aircraft)
continue;
dist = iradarEcho->dist;
dist *= range;
// calculate relative bearing
float angle = calcRelBearing(iradarEcho->bearing, view_heading);
float limit = _radar_coverage_node->getFloatValue();
if (limit > 180)
limit = 180;
else if (limit < 0)
limit = 0;
// if it's in coverage, draw it
if (angle >= limit * SG_DEGREES_TO_RADIANS
|| angle < -limit * SG_DEGREES_TO_RADIANS)
continue;
size = symbolSize * 750;
// Rotate symbol to indicate relative heading iradarEcho->bearing
// - view_heading - angle
//cout << "heading " << iradarEcho->heading << endl;
osg::Matrixf m(osg::Matrixf::scale(size, size, 1.0f)
* wxRotate(iradarEcho->heading - view_heading - angle)
* osg::Matrixf::translate(0.0f, dist, 0.0f)
* wxRotate(angle) * centerTrans);
addQuad(vertices, texCoords, m, texBase);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: drawing data"
<< " ID " << iradarEcho->cloudId
<< " view_heading " << view_heading / SG_DEGREES_TO_RADIANS
<< " bearing " << angle / SG_DEGREES_TO_RADIANS
<< " dist" << dist
<< " heading " << iradarEcho->heading / SG_DEGREES_TO_RADIANS
<< " rotation " << (iradarEcho->heading - view_heading - angle)
/ SG_DEGREES_TO_RADIANS);
}
}
//draw TACAN symbol
int mode = _radar_mode_control_node->getIntValue();
bool inRange = _tacan_in_range_node->getBoolValue();
if (mode == 1 && inRange) {
const osg::Vec2f texBase(1 * symbolSize, 3 * symbolSize);
dist = _tacan_distance_node->getFloatValue() * SG_NM_TO_METER;
dist *= range;
// calculate relative bearing
float angle = calcRelBearing(_tacan_bearing_node->getFloatValue()
* SG_DEGREES_TO_RADIANS, view_heading);
// it's always in coverage, so draw it
osg::Vec3f trans(osg::Vec3f(0.0f, dist, 0.0f) * wxRotate(angle));
size = symbolSize * 750;
osg::Matrixf m(osg::Matrixf::scale(size, size, 1.0f)
* osg::Matrixf::translate(trans) * centerTrans);
addQuad(vertices, texCoords, m, texBase);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: drawing TACAN"
<< " dist" << dist
<< " view_heading " << view_heading / SG_DEGREES_TO_RADIANS
<< " heading " << _tacan_bearing_node->getDoubleValue()
<< " angle " << angle / SG_DEGREES_TO_RADIANS
<< " size " << size);
}
//draw aircraft symbol
const osg::Vec2f texBase(2 * symbolSize, 3 * symbolSize);
size = symbolSize * 750;
view_heading = get_heading() * SG_DEGREES_TO_RADIANS;
osg::Matrixf m(osg::Matrixf::scale(size, size, 1.0f)
* wxRotate(view_heading));
if (display_mode == "map") {
//cout << "Map Mode " << range << endl;
m *= osg::Matrixf::translate(range, range, 0.0f);
}
m *= centerTrans;
addQuad(vertices, texCoords, m, texBase);
osg::DrawArrays* quadPSet
= static_cast<osg::DrawArrays*>(geom->getPrimitiveSet(0));
quadPSet->set(osg::PrimitiveSet::QUADS, 0, vertices->size());
quadPSet->dirty();
// erase what is out of sight of antenna
/*
|\ /|
| \ / |
| \ / |
---------
| |
| |
---------
*/
osg::DrawArrays* maskPSet
= static_cast<osg::DrawArrays*>(geom->getPrimitiveSet(1));
osg::DrawArrays* trimaskPSet
= static_cast<osg::DrawArrays*>(geom->getPrimitiveSet(2));
float xOffset = 256.0f, yOffset = 180.0f;
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: display mode " << display_mode);
#if 0
if ( display_mode != "arc" ) {
xOffset = 240.0f;
yOffset = 40.0f;
}
#endif
if (display_mode == "arc" ) {
int firstQuadVert = vertices->size();
texCoords->push_back(osg::Vec2f(0.5f, 0.25f));
vertices->push_back(osg::Vec2f(-xOffset, 0.0 + yOffset));
texCoords->push_back(osg::Vec2f(1.0f, 0.25f));
vertices->push_back(osg::Vec2f(xOffset, 0.0 + yOffset));
texCoords->push_back(osg::Vec2f(1.0f, 0.5f));
vertices->push_back(osg::Vec2f(xOffset, 256.0 + yOffset));
texCoords->push_back(osg::Vec2f(0.5f, 0.5f));
vertices->push_back(osg::Vec2f(-xOffset, 256.0 + yOffset));
maskPSet->set(osg::PrimitiveSet::QUADS, firstQuadVert, 4);
// The triangles aren't supposed to be textured, but there's
// no need to set up a different Geometry, switch modes,
// etc. I happen to know that there's a white pixel in the
// texture at 1.0, 0.0 :)
float centerY = tan(30 * SG_DEGREES_TO_RADIANS);
const osg::Vec2f whiteSpot(1.0f, 0.0f);
vertices->push_back(osg::Vec2f(0.0, 0.0));
vertices->push_back(osg::Vec2f(-256.0, 0.0));
vertices->push_back(osg::Vec2f(-256.0, 256.0 * centerY));
vertices->push_back(osg::Vec2f(0.0, 0.0));
vertices->push_back(osg::Vec2f(256.0, 0.0));
vertices->push_back(osg::Vec2f(256.0, 256.0 * centerY));
vertices->push_back(osg::Vec2f(-256, 0.0));
vertices->push_back(osg::Vec2f(256.0, 0.0));
vertices->push_back(osg::Vec2f(-256.0, -256.0));
vertices->push_back(osg::Vec2f(256, 0.0));
vertices->push_back(osg::Vec2f(256.0, -256.0));
vertices->push_back(osg::Vec2f(-256.0, -256.0));
for (int i = 0; i < 3 * 4; i++)
texCoords->push_back(whiteSpot);
trimaskPSet->set(osg::PrimitiveSet::TRIANGLES, firstQuadVert + 4,
3 * 4);
} else {
maskPSet->set(osg::PrimitiveSet::QUADS, 0, 0);
trimaskPSet->set(osg::PrimitiveSet::TRIANGLES, 0, 0);
}
maskPSet->dirty();
trimaskPSet->dirty();
}
void
wxRadarBg::updateRadar()
{
bool ai_enabled = _ai_enabled_node->getBoolValue();
if (!ai_enabled)
return;
double radius[] = {0, 1, 1.5, 1.5, 0.001, 0.1, 1.5, 2, 1.5, 1.5};
bool isDetected = false;
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: Loading AI submodels ");
_radar_list = _ai->get_ai_list();
if (_radar_list.empty()) {
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: Unable to read AI submodel list");
return;
}
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: AI submodel list size" << _radar_list.size());
double user_alt = _user_alt_node->getDoubleValue();
double user_lat = _user_lat_node->getDoubleValue();
double user_lon = _user_lon_node->getDoubleValue();
radar_list_iterator radar_list_itr = _radar_list.begin();
radar_list_iterator end = _radar_list.end();
while (radar_list_itr != end) {
double range = (*radar_list_itr)->_getRange();
double bearing = (*radar_list_itr)->_getBearing();
double lat = (*radar_list_itr)->_getLatitude();
double lon = (*radar_list_itr)->_getLongitude();
double alt = (*radar_list_itr)->_getAltitude();
double heading = (*radar_list_itr)->_getHeading();
int id = (*radar_list_itr)->getID();
int type = (*radar_list_itr)->getType();
calcRngBrg(user_lat, user_lon, lat, lon, range, bearing);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: AI list size" << _radar_list.size()
<< " type " << type
<< " ID " << id
<< " radar range " << range
<< " bearing " << bearing
<< " alt " << alt);
bool isVisible = calcRadarHorizon(user_alt, alt, range);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: visible " << isVisible);
if (isVisible)
isDetected = calcMaxRange(type, range);
//(float _heading, float _alt, float _radius, float _dist, double _LWC, bool _lightning,
// int _cloudId, bool _aircraft)
if (isDetected)
_radarEchoBuffer.push_back(SGWxRadarEcho (
bearing * SG_DEGREES_TO_RADIANS,
alt,
radius[type] * 120,
range * SG_NM_TO_METER,
heading * SG_DEGREES_TO_RADIANS,
1,
false,
id,
true));
++radar_list_itr;
}
}
bool
wxRadarBg::calcRadarHorizon(double user_alt, double alt, double range)
{
// Radar Horizon = 1.23(ht^1/2 + hr^1/2),
//don't allow negative altitudes (an approximation - yes altitudes can be negative)
if (user_alt < 0)
user_alt = 0;
if (alt < 0)
alt = 0;
double radarhorizon = 1.23 * (sqrt(alt) + sqrt(user_alt));
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: horizon " << radarhorizon);
return radarhorizon >= range;
}
bool
wxRadarBg::calcMaxRange(int type, double range)
{
//The Radar Equation:
//
// MaxRange^4 = (TxPower * AntGain^2 * lambda^2 * sigma)/((constant) * MDS)
//
// Where (constant) = (4*pi)3 and MDS is the Minimum Detectable Signal power.
//
// For a given radar we can assume that the only variable is sigma,
// the target radar cross section.
//
// Here, we will use a normalised rcs (sigma) for a standard target and assume that this
// will provide a maximum range of 35nm;
//
// The reference range is adjustable at runtime
double sigma[] = {0, 1, 100, 100, 0.001, 0.1, 100, 100, 1, 1};
double constant = _radar_ref_rng_node->getDoubleValue();
if (constant <= 0)
constant = 35;
double maxrange = constant * pow(sigma[type], 0.25);
SG_LOG(SG_GENERAL, SG_DEBUG, "Radar: max range " << maxrange);
return maxrange >= range;
}
void
wxRadarBg::calcRngBrg(double lat, double lon, double lat2, double lon2, double &range,
double &bearing ) const
{
double az2, distance;
// calculate the bearing and range of the second pos from the first
geo_inverse_wgs_84(lat, lon, lat2, lon2, &bearing, &az2, &distance);
range = distance *= SG_METER_TO_NM;
}
float
wxRadarBg::calcRelBearing(float bearing, float heading)
{
float angle = bearing - heading;
if (angle > SG_PI)
angle -= 2.0*SG_PI;
if (angle < -SG_PI)
angle += 2.0*SG_PI;
return angle;
}