Implement a simple water shader for HDR. Largely created from the non-HDR WS3.0 water shader, but only generating a fragment normal. Notes: - Water color is a constant in the shader, and set by eye only. - foam etc is not yet implemented. - at very low altitudes the shader breaks down somewhat.
247 lines
8.6 KiB
GLSL
247 lines
8.6 KiB
GLSL
// SPDX-FileCopyrightText: (C) 2024 Stuart Buchanan stuart13@gmail.com
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
// Helper functions for WS30 HDR water implementation
|
|
|
|
#version 330 core
|
|
|
|
// Hardcoded indexes into the texture atlas
|
|
const int ATLAS_INDEX_WATER = 0;
|
|
const int ATLAS_INDEX_WATER_REFLECTION = 1;
|
|
const int ATLAS_INDEX_WAVES_VERT10_NM = 2;
|
|
const int ATLAS_INDEX_WATER_SINE_NMAP = 3;
|
|
const int ATLAS_INDEX_WATER_REFLECTION_GREY = 4;
|
|
const int ATLAS_INDEX_SEA_FOAM = 5;
|
|
const int ATLAS_INDEX_PERLIN_NOISE_NM = 6;
|
|
const int ATLAS_INDEX_OCEAN_DEPTH = 7;
|
|
const int ATLAS_INDEX_GLOBAL_COLORS = 8;
|
|
const int ATLAS_INDEX_PACKICE_OVERLAY = 9;
|
|
|
|
// WS30 uniforms
|
|
uniform sampler2DArray atlas;
|
|
uniform float fg_tileWidth;
|
|
uniform float fg_tileHeight;
|
|
|
|
// Water.eff uniforms
|
|
uniform float osg_SimulationTime;
|
|
uniform float WindN;
|
|
uniform float WindE;
|
|
uniform float WaveFreq;
|
|
uniform float WaveAmp;
|
|
uniform float WaveSharp;
|
|
uniform float WaveAngle;
|
|
uniform float WaveFactor;
|
|
|
|
/////// functions /////////
|
|
|
|
void rotationmatrix(in float angle, out mat4 rotmat)
|
|
{
|
|
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
|
sin( angle ), cos( angle ), 0.0, 0.0,
|
|
0.0 , 0.0 , 1.0, 0.0,
|
|
0.0 , 0.0 , 0.0, 1.0 );
|
|
}
|
|
|
|
// wave functions ///////////////////////
|
|
struct Wave {
|
|
float freq; // 2*PI / wavelength
|
|
float amp; // amplitude
|
|
float phase; // speed * 2*PI / wavelength
|
|
vec2 dir;
|
|
};
|
|
|
|
Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25));
|
|
Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25));
|
|
Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3));
|
|
Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1));
|
|
|
|
float evaluateWave(in Wave w, in vec2 pos, in float t) {
|
|
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
|
|
}
|
|
|
|
// derivative of wave function
|
|
float evaluateWaveDeriv(in Wave w, in vec2 pos, in float t) {
|
|
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
|
}
|
|
|
|
// sharp wave functions
|
|
float evaluateWaveSharp(in Wave w, in vec2 pos, in float t, in float k) {
|
|
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
|
|
}
|
|
|
|
float evaluateWaveDerivSharp(in Wave w, in vec2 pos, in float t, in float k) {
|
|
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
|
}
|
|
|
|
void sumWaves(in float angle, in float dangle, in float windScale, in float factor, in vec4 waterTex1, out float ddx, float ddy) {
|
|
mat4 RotationMatrix;
|
|
float deriv;
|
|
vec4 P = waterTex1 * 1024;
|
|
|
|
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
|
|
P *= RotationMatrix;
|
|
|
|
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
|
|
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
|
|
ddx = deriv * wave0.dir.x;
|
|
ddy = deriv * wave0.dir.y;
|
|
|
|
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
|
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
|
ddx += deriv * wave2.dir.x;
|
|
ddy += deriv * wave2.dir.y;
|
|
|
|
}
|
|
|
|
vec3 generateWaterNormal(in vec2 texCoords)
|
|
{
|
|
float tileScale = 1 / (fg_tileHeight + fg_tileWidth) / 2.0;
|
|
|
|
vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) * tileScale;
|
|
vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) * tileScale;
|
|
vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) / 10000.0 * tileScale;
|
|
|
|
vec3 Normal = vec3 (0.0, 0.0, 1.0);
|
|
|
|
const float water_shininess = 240.0;
|
|
|
|
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
|
|
float windScale = 15.0/(3.0 + windEffect); //wave scale
|
|
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
|
|
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
|
|
|
|
vec4 t1 = vec4(0.0, osg_SimulationTime * 0.005217, 0.0, 0.0);
|
|
vec4 t2 = vec4(0.0, osg_SimulationTime * -0.0012, 0.0, 0.0);
|
|
|
|
float Angle;
|
|
|
|
float windFactor = sqrt(WindE * WindE + WindN * WindN) * 0.05;
|
|
if (WindN == 0.0 && WindE == 0.0) {
|
|
Angle = 0.0;
|
|
} else {
|
|
Angle = atan(-WindN, WindE) - atan(1.0);
|
|
}
|
|
|
|
mat4 RotationMatrix;
|
|
rotationmatrix(Angle, RotationMatrix);
|
|
vec4 waterTex1 = vec4(texCoords.s, texCoords.t, 0.0, 0.0) * RotationMatrix - t1 * windFactor;
|
|
rotationmatrix(Angle, RotationMatrix);
|
|
vec4 waterTex2 = vec4(texCoords.s, texCoords.t, 0.0, 0.0) * RotationMatrix - t2 * windFactor;
|
|
|
|
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
|
|
mixFactor = clamp(mixFactor, 0.3, 0.8);
|
|
|
|
// sine waves
|
|
float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3;
|
|
float angle;
|
|
|
|
ddx = 0.0, ddy = 0.0;
|
|
ddx1 = 0.0, ddy1 = 0.0;
|
|
ddx2 = 0.0, ddy2 = 0.0;
|
|
ddx3 = 0.0, ddy3 = 0.0;
|
|
|
|
angle = 0.0;
|
|
|
|
wave0.freq = WaveFreq ;
|
|
wave0.amp = WaveAmp;
|
|
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
angle -= 45;
|
|
wave1.freq = WaveFreq * 2.0 ;
|
|
wave1.amp = WaveAmp * 1.25;
|
|
wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
angle += 30;
|
|
wave2.freq = WaveFreq * 3.5;
|
|
wave2.amp = WaveAmp * 0.75;
|
|
wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
angle -= 50;
|
|
wave3.freq = WaveFreq * 3.0 ;
|
|
wave3.amp = WaveAmp * 0.75;
|
|
wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
// sum waves
|
|
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, waterTex1, ddx, ddy);
|
|
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, waterTex1, ddx1, ddy1);
|
|
|
|
//reset the waves
|
|
angle = 0.0;
|
|
float waveamp = WaveAmp * 0.75;
|
|
|
|
wave0.freq = WaveFreq ;
|
|
wave0.amp = waveamp;
|
|
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
angle -= 20;
|
|
wave1.freq = WaveFreq * 2.0 ;
|
|
wave1.amp = waveamp * 1.25;
|
|
wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
angle += 35;
|
|
wave2.freq = WaveFreq * 3.5;
|
|
wave2.amp = waveamp * 0.75;
|
|
wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle)));
|
|
|
|
angle -= 45;
|
|
wave3.freq = WaveFreq * 3.0 ;
|
|
wave3.amp = waveamp * 0.75;
|
|
wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle)));
|
|
// end sine stuff
|
|
|
|
vec2 st = vec2(waterTex2 * tscale * windScale);
|
|
vec4 disdis = texture(atlas, vec3(st, ATLAS_INDEX_WATER_SINE_NMAP)) * 2.0 - 1.0;
|
|
|
|
//normalmaps
|
|
st = vec2(waterTex1 + disdis * sca2) * windScale;
|
|
vec4 nmap = texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
|
|
vec4 nmap1 = texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM)) * 2.0 - 1.0;
|
|
|
|
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
|
|
st = vec2(waterTex2 * RotationMatrix * tscale) * windScale;
|
|
nmap += texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
|
|
|
|
nmap *= windEffect_low;
|
|
nmap1 *= windEffect_low;
|
|
|
|
// mix water and noise, modulated by factor
|
|
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
|
|
vNorm.r += ddx + ddx1 + ddx2 + ddx3;
|
|
|
|
st = vec2(waterTex1 + disdis * sca2) * windScale;
|
|
vec3 N0 = vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
|
st = vec2(waterTex1 + disdis * sca) * windScale;
|
|
vec3 N1 = vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
|
|
|
st = vec2(waterTex1 * tscale) * windScale;
|
|
N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
|
N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
|
|
|
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
|
|
st = vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale;
|
|
N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
|
N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
|
|
|
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
|
|
st = vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale;
|
|
N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
|
st = vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale;
|
|
N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
|
|
|
N0 *= windEffect_low;
|
|
N1 *= windEffect_low;
|
|
|
|
N0.r += (ddx + ddx1 + ddx2 + ddx3);
|
|
N0.g += (ddy + ddy1 + ddy2 + ddy3);
|
|
|
|
vec3 N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness);
|
|
|
|
// From observation, the normal is generated in the wrong direction, resulting
|
|
// in specular highlights facing away from the Sun. This matrix attempts to correct it
|
|
|
|
mat3 rotMat = mat3(0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0,
|
|
1.0, 0.0, 0.0);
|
|
N = N * rotMat;
|
|
return N;
|
|
}
|