HDR: W3.0 water shader - initial implementation
Implement a simple water shader for HDR. Largely created from the non-HDR WS3.0 water shader, but only generating a fragment normal. Notes: - Water color is a constant in the shader, and set by eye only. - foam etc is not yet implemented. - at very low altitudes the shader breaks down somewhat.
This commit is contained in:
parent
c0e1e31674
commit
dda21aeae1
3 changed files with 330 additions and 5 deletions
|
@ -1932,6 +1932,7 @@
|
|||
<vertex-shader>Shaders/HDR/ws30.vert</vertex-shader>
|
||||
<vertex-shader>Shaders/HDR/logarithmic_depth.glsl</vertex-shader>
|
||||
<fragment-shader>Shaders/HDR/ws30.frag</fragment-shader>
|
||||
<fragment-shader>Shaders/HDR/water.glsl</fragment-shader>
|
||||
<fragment-shader>Shaders/HDR/logarithmic_depth.glsl</fragment-shader>
|
||||
<fragment-shader>Shaders/HDR/gbuffer_pack.glsl</fragment-shader>
|
||||
<fragment-shader>Shaders/HDR/normal_encoding.glsl</fragment-shader>
|
||||
|
@ -1953,6 +1954,67 @@
|
|||
<type>sampler-2d</type>
|
||||
<value type="int">6</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>coastline</name>
|
||||
<type>sampler-2d</type>
|
||||
<value type="int">7</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WindE</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>windE</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WindN</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>windN</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WaveFreq</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>WaveFreq</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WaveAmp</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>WaveAmp</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WaveSharp</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>WaveSharp</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WaveAngle</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>WaveAngle</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WaveFactor</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>WaveFactor</use>
|
||||
</value>
|
||||
</uniform>
|
||||
<uniform>
|
||||
<name>WaveDAngle</name>
|
||||
<type>float</type>
|
||||
<value>
|
||||
<use>WaveDAngle</use>
|
||||
</value>
|
||||
</uniform>
|
||||
</pass>
|
||||
</technique>
|
||||
|
||||
|
|
247
Shaders/HDR/water.glsl
Normal file
247
Shaders/HDR/water.glsl
Normal file
|
@ -0,0 +1,247 @@
|
|||
// SPDX-FileCopyrightText: (C) 2024 Stuart Buchanan stuart13@gmail.com
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
// Helper functions for WS30 HDR water implementation
|
||||
|
||||
#version 330 core
|
||||
|
||||
// Hardcoded indexes into the texture atlas
|
||||
const int ATLAS_INDEX_WATER = 0;
|
||||
const int ATLAS_INDEX_WATER_REFLECTION = 1;
|
||||
const int ATLAS_INDEX_WAVES_VERT10_NM = 2;
|
||||
const int ATLAS_INDEX_WATER_SINE_NMAP = 3;
|
||||
const int ATLAS_INDEX_WATER_REFLECTION_GREY = 4;
|
||||
const int ATLAS_INDEX_SEA_FOAM = 5;
|
||||
const int ATLAS_INDEX_PERLIN_NOISE_NM = 6;
|
||||
const int ATLAS_INDEX_OCEAN_DEPTH = 7;
|
||||
const int ATLAS_INDEX_GLOBAL_COLORS = 8;
|
||||
const int ATLAS_INDEX_PACKICE_OVERLAY = 9;
|
||||
|
||||
// WS30 uniforms
|
||||
uniform sampler2DArray atlas;
|
||||
uniform float fg_tileWidth;
|
||||
uniform float fg_tileHeight;
|
||||
|
||||
// Water.eff uniforms
|
||||
uniform float osg_SimulationTime;
|
||||
uniform float WindN;
|
||||
uniform float WindE;
|
||||
uniform float WaveFreq;
|
||||
uniform float WaveAmp;
|
||||
uniform float WaveSharp;
|
||||
uniform float WaveAngle;
|
||||
uniform float WaveFactor;
|
||||
|
||||
/////// functions /////////
|
||||
|
||||
void rotationmatrix(in float angle, out mat4 rotmat)
|
||||
{
|
||||
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
||||
sin( angle ), cos( angle ), 0.0, 0.0,
|
||||
0.0 , 0.0 , 1.0, 0.0,
|
||||
0.0 , 0.0 , 0.0, 1.0 );
|
||||
}
|
||||
|
||||
// wave functions ///////////////////////
|
||||
struct Wave {
|
||||
float freq; // 2*PI / wavelength
|
||||
float amp; // amplitude
|
||||
float phase; // speed * 2*PI / wavelength
|
||||
vec2 dir;
|
||||
};
|
||||
|
||||
Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25));
|
||||
Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25));
|
||||
Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3));
|
||||
Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1));
|
||||
|
||||
float evaluateWave(in Wave w, in vec2 pos, in float t) {
|
||||
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
|
||||
}
|
||||
|
||||
// derivative of wave function
|
||||
float evaluateWaveDeriv(in Wave w, in vec2 pos, in float t) {
|
||||
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
||||
}
|
||||
|
||||
// sharp wave functions
|
||||
float evaluateWaveSharp(in Wave w, in vec2 pos, in float t, in float k) {
|
||||
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
|
||||
}
|
||||
|
||||
float evaluateWaveDerivSharp(in Wave w, in vec2 pos, in float t, in float k) {
|
||||
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
||||
}
|
||||
|
||||
void sumWaves(in float angle, in float dangle, in float windScale, in float factor, in vec4 waterTex1, out float ddx, float ddy) {
|
||||
mat4 RotationMatrix;
|
||||
float deriv;
|
||||
vec4 P = waterTex1 * 1024;
|
||||
|
||||
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
|
||||
P *= RotationMatrix;
|
||||
|
||||
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
|
||||
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
|
||||
ddx = deriv * wave0.dir.x;
|
||||
ddy = deriv * wave0.dir.y;
|
||||
|
||||
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
||||
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
||||
ddx += deriv * wave2.dir.x;
|
||||
ddy += deriv * wave2.dir.y;
|
||||
|
||||
}
|
||||
|
||||
vec3 generateWaterNormal(in vec2 texCoords)
|
||||
{
|
||||
float tileScale = 1 / (fg_tileHeight + fg_tileWidth) / 2.0;
|
||||
|
||||
vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) * tileScale;
|
||||
vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) * tileScale;
|
||||
vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) / 10000.0 * tileScale;
|
||||
|
||||
vec3 Normal = vec3 (0.0, 0.0, 1.0);
|
||||
|
||||
const float water_shininess = 240.0;
|
||||
|
||||
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
|
||||
float windScale = 15.0/(3.0 + windEffect); //wave scale
|
||||
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
|
||||
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
|
||||
|
||||
vec4 t1 = vec4(0.0, osg_SimulationTime * 0.005217, 0.0, 0.0);
|
||||
vec4 t2 = vec4(0.0, osg_SimulationTime * -0.0012, 0.0, 0.0);
|
||||
|
||||
float Angle;
|
||||
|
||||
float windFactor = sqrt(WindE * WindE + WindN * WindN) * 0.05;
|
||||
if (WindN == 0.0 && WindE == 0.0) {
|
||||
Angle = 0.0;
|
||||
} else {
|
||||
Angle = atan(-WindN, WindE) - atan(1.0);
|
||||
}
|
||||
|
||||
mat4 RotationMatrix;
|
||||
rotationmatrix(Angle, RotationMatrix);
|
||||
vec4 waterTex1 = vec4(texCoords.s, texCoords.t, 0.0, 0.0) * RotationMatrix - t1 * windFactor;
|
||||
rotationmatrix(Angle, RotationMatrix);
|
||||
vec4 waterTex2 = vec4(texCoords.s, texCoords.t, 0.0, 0.0) * RotationMatrix - t2 * windFactor;
|
||||
|
||||
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
|
||||
mixFactor = clamp(mixFactor, 0.3, 0.8);
|
||||
|
||||
// sine waves
|
||||
float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3;
|
||||
float angle;
|
||||
|
||||
ddx = 0.0, ddy = 0.0;
|
||||
ddx1 = 0.0, ddy1 = 0.0;
|
||||
ddx2 = 0.0, ddy2 = 0.0;
|
||||
ddx3 = 0.0, ddy3 = 0.0;
|
||||
|
||||
angle = 0.0;
|
||||
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = WaveAmp;
|
||||
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle -= 45;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = WaveAmp * 1.25;
|
||||
wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle += 30;
|
||||
wave2.freq = WaveFreq * 3.5;
|
||||
wave2.amp = WaveAmp * 0.75;
|
||||
wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle -= 50;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = WaveAmp * 0.75;
|
||||
wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
// sum waves
|
||||
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, waterTex1, ddx, ddy);
|
||||
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, waterTex1, ddx1, ddy1);
|
||||
|
||||
//reset the waves
|
||||
angle = 0.0;
|
||||
float waveamp = WaveAmp * 0.75;
|
||||
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = waveamp;
|
||||
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle -= 20;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = waveamp * 1.25;
|
||||
wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle += 35;
|
||||
wave2.freq = WaveFreq * 3.5;
|
||||
wave2.amp = waveamp * 0.75;
|
||||
wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle -= 45;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = waveamp * 0.75;
|
||||
wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
// end sine stuff
|
||||
|
||||
vec2 st = vec2(waterTex2 * tscale * windScale);
|
||||
vec4 disdis = texture(atlas, vec3(st, ATLAS_INDEX_WATER_SINE_NMAP)) * 2.0 - 1.0;
|
||||
|
||||
//normalmaps
|
||||
st = vec2(waterTex1 + disdis * sca2) * windScale;
|
||||
vec4 nmap = texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
|
||||
vec4 nmap1 = texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM)) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
|
||||
st = vec2(waterTex2 * RotationMatrix * tscale) * windScale;
|
||||
nmap += texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
|
||||
|
||||
nmap *= windEffect_low;
|
||||
nmap1 *= windEffect_low;
|
||||
|
||||
// mix water and noise, modulated by factor
|
||||
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
|
||||
vNorm.r += ddx + ddx1 + ddx2 + ddx3;
|
||||
|
||||
st = vec2(waterTex1 + disdis * sca2) * windScale;
|
||||
vec3 N0 = vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
||||
st = vec2(waterTex1 + disdis * sca) * windScale;
|
||||
vec3 N1 = vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
||||
|
||||
st = vec2(waterTex1 * tscale) * windScale;
|
||||
N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
||||
N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
|
||||
st = vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale;
|
||||
N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
||||
N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
|
||||
st = vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale;
|
||||
N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
|
||||
st = vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale;
|
||||
N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
|
||||
|
||||
N0 *= windEffect_low;
|
||||
N1 *= windEffect_low;
|
||||
|
||||
N0.r += (ddx + ddx1 + ddx2 + ddx3);
|
||||
N0.g += (ddy + ddy1 + ddy2 + ddy3);
|
||||
|
||||
vec3 N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness);
|
||||
|
||||
// From observation, the normal is generated in the wrong direction, resulting
|
||||
// in specular highlights facing away from the Sun. This matrix attempts to correct it
|
||||
|
||||
mat3 rotMat = mat3(0.0, 0.0, 1.0,
|
||||
0.0, 1.0, 0.0,
|
||||
1.0, 0.0, 0.0);
|
||||
N = N * rotMat;
|
||||
return N;
|
||||
}
|
|
@ -22,10 +22,18 @@ uniform vec4 fg_textureLookup1[128];
|
|||
uniform vec4 fg_textureLookup2[128];
|
||||
uniform mat4 fg_zUpTransform;
|
||||
uniform vec3 fg_modelOffset;
|
||||
uniform sampler2D coastline;
|
||||
|
||||
const float TERRAIN_METALLIC = 0.0;
|
||||
const float TERRAIN_ROUGHNESS = 0.95;
|
||||
|
||||
const vec3 WATER_COLOR = vec3(0.1, 0.1, 0.3);
|
||||
const float WATER_METALLIC = 0.0;
|
||||
const float WATER_ROUGHNESS = 0.25;
|
||||
|
||||
// Procedurally generate a water normal for this fragment
|
||||
vec3 generateWaterNormal(in vec2 texCoords);
|
||||
|
||||
// gbuffer_pack.glsl
|
||||
void gbuffer_pack(vec3 normal, vec3 base_color, float metallic, float roughness,
|
||||
float occlusion, vec3 emissive, uint mat_id);
|
||||
|
@ -38,6 +46,9 @@ void main()
|
|||
{
|
||||
vec3 texel;
|
||||
vec4 specular = vec4(0.1, 0.1, 0.1, 1.0);
|
||||
vec3 N = normalize(fs_in.vertex_normal);
|
||||
float metallic = TERRAIN_METALLIC;
|
||||
float roughness = TERRAIN_ROUGHNESS;
|
||||
|
||||
if (fg_photoScenery) {
|
||||
texel = texture(landclass, vec2(fs_in.texcoord.s, 1.0 - fs_in.texcoord.t)).rgb;
|
||||
|
@ -46,12 +57,13 @@ void main()
|
|||
// The Landclass for this particular fragment. This can be used to
|
||||
// index into the atlas textures.
|
||||
int lc = int(texture2D(landclass, fs_in.texcoord).g * 255.0 + 0.5);
|
||||
bool water = (texture2D(landclass, fs_in.texcoord).z > 0.9) || (texture2D(coastline, fs_in.texcoord).b > 0.05);
|
||||
uint tex1 = uint(fg_textureLookup1[lc].r * 255.0 + 0.5);
|
||||
|
||||
//color = ambientArray[lc] + diffuseArray[lc] * NdotL * gl_LightSource[0].diffuse;
|
||||
specular = fg_specularArray[lc];
|
||||
|
||||
// Different textures have different have different dimensions.
|
||||
// Different textures have different dimensions.
|
||||
vec2 atlas_dimensions = fg_dimensionsArray[lc].st;
|
||||
vec2 atlas_scale = vec2(fg_tileWidth / atlas_dimensions.s, fg_tileHeight / atlas_dimensions.t );
|
||||
vec2 st = atlas_scale * fs_in.texcoord;
|
||||
|
@ -66,12 +78,16 @@ void main()
|
|||
}
|
||||
|
||||
texel = texture(atlas, vec3(st, tex1)).rgb;
|
||||
|
||||
if (water) {
|
||||
N = generateWaterNormal(fs_in.texcoord);
|
||||
texel = WATER_COLOR;
|
||||
roughness = WATER_ROUGHNESS;
|
||||
metallic = WATER_METALLIC;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
vec3 color = eotf_inverse_sRGB(texel);
|
||||
vec3 N = normalize(fs_in.vertex_normal);
|
||||
|
||||
gbuffer_pack(N, color, TERRAIN_METALLIC, TERRAIN_ROUGHNESS, 1.0, vec3(0.0), 3u);
|
||||
gbuffer_pack(N, color, metallic, roughness, 1.0, vec3(0.0), 3u);
|
||||
gl_FragDepth = logdepth_encode(fs_in.flogz);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue