diff --git a/Effects/ws30.eff b/Effects/ws30.eff
index 4a5ae4e7b..235110f73 100644
--- a/Effects/ws30.eff
+++ b/Effects/ws30.eff
@@ -1932,6 +1932,7 @@
Shaders/HDR/ws30.vert
Shaders/HDR/logarithmic_depth.glsl
Shaders/HDR/ws30.frag
+ Shaders/HDR/water.glsl
Shaders/HDR/logarithmic_depth.glsl
Shaders/HDR/gbuffer_pack.glsl
Shaders/HDR/normal_encoding.glsl
@@ -1953,6 +1954,67 @@
sampler-2d
6
+
+ coastline
+ sampler-2d
+ 7
+
+
+ WindE
+ float
+
+
+
+
+
+ WindN
+ float
+
+
+
+
+
+ WaveFreq
+ float
+
+
+
+
+
+ WaveAmp
+ float
+
+
+
+
+
+ WaveSharp
+ float
+
+
+
+
+
+ WaveAngle
+ float
+
+
+
+
+
+ WaveFactor
+ float
+
+
+
+
+
+ WaveDAngle
+ float
+
+
+
+
diff --git a/Shaders/HDR/water.glsl b/Shaders/HDR/water.glsl
new file mode 100644
index 000000000..d0866f0bf
--- /dev/null
+++ b/Shaders/HDR/water.glsl
@@ -0,0 +1,247 @@
+// SPDX-FileCopyrightText: (C) 2024 Stuart Buchanan stuart13@gmail.com
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+// Helper functions for WS30 HDR water implementation
+
+#version 330 core
+
+// Hardcoded indexes into the texture atlas
+const int ATLAS_INDEX_WATER = 0;
+const int ATLAS_INDEX_WATER_REFLECTION = 1;
+const int ATLAS_INDEX_WAVES_VERT10_NM = 2;
+const int ATLAS_INDEX_WATER_SINE_NMAP = 3;
+const int ATLAS_INDEX_WATER_REFLECTION_GREY = 4;
+const int ATLAS_INDEX_SEA_FOAM = 5;
+const int ATLAS_INDEX_PERLIN_NOISE_NM = 6;
+const int ATLAS_INDEX_OCEAN_DEPTH = 7;
+const int ATLAS_INDEX_GLOBAL_COLORS = 8;
+const int ATLAS_INDEX_PACKICE_OVERLAY = 9;
+
+// WS30 uniforms
+uniform sampler2DArray atlas;
+uniform float fg_tileWidth;
+uniform float fg_tileHeight;
+
+// Water.eff uniforms
+uniform float osg_SimulationTime;
+uniform float WindN;
+uniform float WindE;
+uniform float WaveFreq;
+uniform float WaveAmp;
+uniform float WaveSharp;
+uniform float WaveAngle;
+uniform float WaveFactor;
+
+/////// functions /////////
+
+void rotationmatrix(in float angle, out mat4 rotmat)
+{
+ rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
+ sin( angle ), cos( angle ), 0.0, 0.0,
+ 0.0 , 0.0 , 1.0, 0.0,
+ 0.0 , 0.0 , 0.0, 1.0 );
+}
+
+// wave functions ///////////////////////
+struct Wave {
+ float freq; // 2*PI / wavelength
+ float amp; // amplitude
+ float phase; // speed * 2*PI / wavelength
+ vec2 dir;
+};
+
+Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25));
+Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25));
+Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3));
+Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1));
+
+float evaluateWave(in Wave w, in vec2 pos, in float t) {
+ return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
+}
+
+// derivative of wave function
+float evaluateWaveDeriv(in Wave w, in vec2 pos, in float t) {
+ return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
+}
+
+// sharp wave functions
+float evaluateWaveSharp(in Wave w, in vec2 pos, in float t, in float k) {
+ return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
+}
+
+float evaluateWaveDerivSharp(in Wave w, in vec2 pos, in float t, in float k) {
+ return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
+}
+
+void sumWaves(in float angle, in float dangle, in float windScale, in float factor, in vec4 waterTex1, out float ddx, float ddy) {
+ mat4 RotationMatrix;
+ float deriv;
+ vec4 P = waterTex1 * 1024;
+
+ rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
+ P *= RotationMatrix;
+
+ P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
+ deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
+ ddx = deriv * wave0.dir.x;
+ ddy = deriv * wave0.dir.y;
+
+ P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
+ deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
+ ddx += deriv * wave2.dir.x;
+ ddy += deriv * wave2.dir.y;
+
+}
+
+vec3 generateWaterNormal(in vec2 texCoords)
+{
+ float tileScale = 1 / (fg_tileHeight + fg_tileWidth) / 2.0;
+
+ vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) * tileScale;
+ vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) * tileScale;
+ vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) / 10000.0 * tileScale;
+
+ vec3 Normal = vec3 (0.0, 0.0, 1.0);
+
+ const float water_shininess = 240.0;
+
+ float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
+ float windScale = 15.0/(3.0 + windEffect); //wave scale
+ float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
+ float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
+
+ vec4 t1 = vec4(0.0, osg_SimulationTime * 0.005217, 0.0, 0.0);
+ vec4 t2 = vec4(0.0, osg_SimulationTime * -0.0012, 0.0, 0.0);
+
+ float Angle;
+
+ float windFactor = sqrt(WindE * WindE + WindN * WindN) * 0.05;
+ if (WindN == 0.0 && WindE == 0.0) {
+ Angle = 0.0;
+ } else {
+ Angle = atan(-WindN, WindE) - atan(1.0);
+ }
+
+ mat4 RotationMatrix;
+ rotationmatrix(Angle, RotationMatrix);
+ vec4 waterTex1 = vec4(texCoords.s, texCoords.t, 0.0, 0.0) * RotationMatrix - t1 * windFactor;
+ rotationmatrix(Angle, RotationMatrix);
+ vec4 waterTex2 = vec4(texCoords.s, texCoords.t, 0.0, 0.0) * RotationMatrix - t2 * windFactor;
+
+ float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
+ mixFactor = clamp(mixFactor, 0.3, 0.8);
+
+ // sine waves
+ float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3;
+ float angle;
+
+ ddx = 0.0, ddy = 0.0;
+ ddx1 = 0.0, ddy1 = 0.0;
+ ddx2 = 0.0, ddy2 = 0.0;
+ ddx3 = 0.0, ddy3 = 0.0;
+
+ angle = 0.0;
+
+ wave0.freq = WaveFreq ;
+ wave0.amp = WaveAmp;
+ wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
+
+ angle -= 45;
+ wave1.freq = WaveFreq * 2.0 ;
+ wave1.amp = WaveAmp * 1.25;
+ wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle)));
+
+ angle += 30;
+ wave2.freq = WaveFreq * 3.5;
+ wave2.amp = WaveAmp * 0.75;
+ wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle)));
+
+ angle -= 50;
+ wave3.freq = WaveFreq * 3.0 ;
+ wave3.amp = WaveAmp * 0.75;
+ wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle)));
+
+ // sum waves
+ sumWaves(WaveAngle, -1.5, windScale, WaveFactor, waterTex1, ddx, ddy);
+ sumWaves(WaveAngle, 1.5, windScale, WaveFactor, waterTex1, ddx1, ddy1);
+
+ //reset the waves
+ angle = 0.0;
+ float waveamp = WaveAmp * 0.75;
+
+ wave0.freq = WaveFreq ;
+ wave0.amp = waveamp;
+ wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
+
+ angle -= 20;
+ wave1.freq = WaveFreq * 2.0 ;
+ wave1.amp = waveamp * 1.25;
+ wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle)));
+
+ angle += 35;
+ wave2.freq = WaveFreq * 3.5;
+ wave2.amp = waveamp * 0.75;
+ wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle)));
+
+ angle -= 45;
+ wave3.freq = WaveFreq * 3.0 ;
+ wave3.amp = waveamp * 0.75;
+ wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle)));
+ // end sine stuff
+
+ vec2 st = vec2(waterTex2 * tscale * windScale);
+ vec4 disdis = texture(atlas, vec3(st, ATLAS_INDEX_WATER_SINE_NMAP)) * 2.0 - 1.0;
+
+ //normalmaps
+ st = vec2(waterTex1 + disdis * sca2) * windScale;
+ vec4 nmap = texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
+ vec4 nmap1 = texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM)) * 2.0 - 1.0;
+
+ rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
+ st = vec2(waterTex2 * RotationMatrix * tscale) * windScale;
+ nmap += texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
+
+ nmap *= windEffect_low;
+ nmap1 *= windEffect_low;
+
+ // mix water and noise, modulated by factor
+ vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
+ vNorm.r += ddx + ddx1 + ddx2 + ddx3;
+
+ st = vec2(waterTex1 + disdis * sca2) * windScale;
+ vec3 N0 = vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
+ st = vec2(waterTex1 + disdis * sca) * windScale;
+ vec3 N1 = vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
+
+ st = vec2(waterTex1 * tscale) * windScale;
+ N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
+ N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
+
+ rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
+ st = vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale;
+ N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
+ N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
+
+ rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
+ st = vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale;
+ N0 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
+ st = vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale;
+ N1 += vec3(texture(atlas, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
+
+ N0 *= windEffect_low;
+ N1 *= windEffect_low;
+
+ N0.r += (ddx + ddx1 + ddx2 + ddx3);
+ N0.g += (ddy + ddy1 + ddy2 + ddy3);
+
+ vec3 N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness);
+
+ // From observation, the normal is generated in the wrong direction, resulting
+ // in specular highlights facing away from the Sun. This matrix attempts to correct it
+
+ mat3 rotMat = mat3(0.0, 0.0, 1.0,
+ 0.0, 1.0, 0.0,
+ 1.0, 0.0, 0.0);
+ N = N * rotMat;
+ return N;
+}
diff --git a/Shaders/HDR/ws30.frag b/Shaders/HDR/ws30.frag
index 6f52ccfe4..5ccec1bf3 100644
--- a/Shaders/HDR/ws30.frag
+++ b/Shaders/HDR/ws30.frag
@@ -22,10 +22,18 @@ uniform vec4 fg_textureLookup1[128];
uniform vec4 fg_textureLookup2[128];
uniform mat4 fg_zUpTransform;
uniform vec3 fg_modelOffset;
+uniform sampler2D coastline;
const float TERRAIN_METALLIC = 0.0;
const float TERRAIN_ROUGHNESS = 0.95;
+const vec3 WATER_COLOR = vec3(0.1, 0.1, 0.3);
+const float WATER_METALLIC = 0.0;
+const float WATER_ROUGHNESS = 0.25;
+
+// Procedurally generate a water normal for this fragment
+vec3 generateWaterNormal(in vec2 texCoords);
+
// gbuffer_pack.glsl
void gbuffer_pack(vec3 normal, vec3 base_color, float metallic, float roughness,
float occlusion, vec3 emissive, uint mat_id);
@@ -38,6 +46,9 @@ void main()
{
vec3 texel;
vec4 specular = vec4(0.1, 0.1, 0.1, 1.0);
+ vec3 N = normalize(fs_in.vertex_normal);
+ float metallic = TERRAIN_METALLIC;
+ float roughness = TERRAIN_ROUGHNESS;
if (fg_photoScenery) {
texel = texture(landclass, vec2(fs_in.texcoord.s, 1.0 - fs_in.texcoord.t)).rgb;
@@ -46,12 +57,13 @@ void main()
// The Landclass for this particular fragment. This can be used to
// index into the atlas textures.
int lc = int(texture2D(landclass, fs_in.texcoord).g * 255.0 + 0.5);
+ bool water = (texture2D(landclass, fs_in.texcoord).z > 0.9) || (texture2D(coastline, fs_in.texcoord).b > 0.05);
uint tex1 = uint(fg_textureLookup1[lc].r * 255.0 + 0.5);
//color = ambientArray[lc] + diffuseArray[lc] * NdotL * gl_LightSource[0].diffuse;
specular = fg_specularArray[lc];
- // Different textures have different have different dimensions.
+ // Different textures have different dimensions.
vec2 atlas_dimensions = fg_dimensionsArray[lc].st;
vec2 atlas_scale = vec2(fg_tileWidth / atlas_dimensions.s, fg_tileHeight / atlas_dimensions.t );
vec2 st = atlas_scale * fs_in.texcoord;
@@ -66,12 +78,16 @@ void main()
}
texel = texture(atlas, vec3(st, tex1)).rgb;
+
+ if (water) {
+ N = generateWaterNormal(fs_in.texcoord);
+ texel = WATER_COLOR;
+ roughness = WATER_ROUGHNESS;
+ metallic = WATER_METALLIC;
+ }
}
-
vec3 color = eotf_inverse_sRGB(texel);
- vec3 N = normalize(fs_in.vertex_normal);
-
- gbuffer_pack(N, color, TERRAIN_METALLIC, TERRAIN_ROUGHNESS, 1.0, vec3(0.0), 3u);
+ gbuffer_pack(N, color, metallic, roughness, 1.0, vec3(0.0), 3u);
gl_FragDepth = logdepth_encode(fs_in.flogz);
}