1
0
Fork 0
fgdata/Shaders/HDR/noise.glsl
2024-01-26 15:19:22 +01:00

264 lines
8.4 KiB
GLSL

/*
* This is a library of noise functions, taking a coordinate vector and
* a wavelength as input and returning a number [0:1] as output.
* - Noise2D() is 2d Perlin noise.
* - Noise3D() is 3d Perlin noise.
* - DotNoise2D() is sparse dot noise and takes a dot density parameter.
* - DropletNoise2D() is sparse dot noise modified to look like liquid and
* takes a dot density parameter.
* - VoronoiNoise2D() is a function mapping the terrain into random domains,
* based on Voronoi tiling of a regular grid distorted with xrand and yrand.
* - SlopeLines2D() computes a semi-random set of lines along the direction of
* steepest descent, allowing to simulate e.g. water erosion patterns.
* - Strata3D() computes a vertically stratified random pattern, appropriate
* e.g. for rock textures
*
* Thorsten Renk 2014
*/
#version 330 core
float rand_1d(float n)
{
return fract(sin(n) * 43758.5453123);
}
float rand_2d(vec2 co)
{
return fract(sin(dot(co.xy, vec2(12.9898,78.233))) * 43758.5453);
}
float rand_3d(vec3 co)
{
return fract(sin(dot(co.xyz, vec3(12.9898,78.233,144.7272))) * 43758.5453);
}
float cosine_interpolate(float a, float b, float x)
{
float ft = x * 3.1415927;
float f = (1.0 - cos(ft)) * 0.5;
return a * (1.0 - f) + b * f;
}
float simple_interpolate(float a, float b, float x)
{
return a + smoothstep(0.0, 1.0, x) * (b - a);
}
float interpolated_noise_2d(vec2 coord)
{
float x = coord.x;
float y = coord.y;
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float v1 = rand_2d(vec2(integer_x, integer_y));
float v2 = rand_2d(vec2(integer_x + 1.0, integer_y));
float v3 = rand_2d(vec2(integer_x, integer_y + 1.0));
float v4 = rand_2d(vec2(integer_x + 1.0, integer_y + 1.0));
float i1 = simple_interpolate(v1, v2, fractional_x);
float i2 = simple_interpolate(v3, v4, fractional_x);
return simple_interpolate(i1, i2, fractional_y);
}
float interpolated_noise_3d(vec3 coord)
{
float x = coord.x;
float y = coord.y;
float z = coord.z;
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float integer_z = z - fract(z);
float fractional_z = z - integer_z;
float v1 = rand_3d(vec3(integer_x, integer_y, integer_z));
float v2 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z));
float v3 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z));
float v4 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z));
float v5 = rand_3d(vec3(integer_x, integer_y, integer_z + 1.0));
float v6 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z + 1.0));
float v7 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z + 1.0));
float v8 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z + 1.0));
float i1 = simple_interpolate(v1, v5, fractional_z);
float i2 = simple_interpolate(v2, v6, fractional_z);
float i3 = simple_interpolate(v3, v7, fractional_z);
float i4 = simple_interpolate(v4, v8, fractional_z);
float ii1 = simple_interpolate(i1, i2, fractional_x);
float ii2 = simple_interpolate(i3, i4, fractional_x);
return simple_interpolate(ii1, ii2, fractional_y);
}
float noise_2d(vec2 coord, float wavelength)
{
return interpolated_noise_2d(coord / wavelength);
}
float noise_3d(vec3 coord, float wavelength)
{
return interpolated_noise_3d(coord / wavelength);
}
float voronoi_noise_2d(vec2 coord, float xrand, float yrand)
{
float x = coord.x;
float y = coord.y;
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float val[4];
val[0] = rand_2d(vec2(integer_x, integer_y));
val[1] = rand_2d(vec2(integer_x+1.0, integer_y));
val[2] = rand_2d(vec2(integer_x, integer_y+1.0));
val[3] = rand_2d(vec2(integer_x+1.0, integer_y+1.0));
float xshift[4];
xshift[0] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y)) - 0.5);
xshift[1] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y)) -0.5);
xshift[2] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y+1.0))-0.5);
xshift[3] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.0))-0.5);
float yshift[4];
yshift[0] = yrand * (rand_2d(vec2(integer_x, integer_y +0.5)) - 0.5);
yshift[1] = yrand * (rand_2d(vec2(integer_x+1.0, integer_y+0.5)) -0.5);
yshift[2] = yrand * (rand_2d(vec2(integer_x, integer_y+1.5))-0.5);
yshift[3] = yrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.5))-0.5);
float dist[4];
dist[0] = sqrt((fractional_x + xshift[0]) * (fractional_x + xshift[0]) + (fractional_y + yshift[0]) * (fractional_y + yshift[0]));
dist[1] = sqrt((1.0 -fractional_x + xshift[1]) * (1.0-fractional_x+xshift[1]) + (fractional_y +yshift[1]) * (fractional_y+yshift[1]));
dist[2] = sqrt((fractional_x + xshift[2]) * (fractional_x + xshift[2]) + (1.0-fractional_y +yshift[2]) * (1.0-fractional_y + yshift[2]));
dist[3] = sqrt((1.0-fractional_x + xshift[3]) * (1.0-fractional_x + xshift[3]) + (1.0-fractional_y +yshift[3]) * (1.0-fractional_y + yshift[3]));
int i_min;
float dist_min = 100.0;
for (int i = 0; i < 4; ++i) {
if (dist[i] < dist_min) {
dist_min = dist[i];
i_min = i;
}
}
return val[i_min];
}
float voronoi_noise_2d(vec2 coord, float wavelength, float xrand, float yrand)
{
return voronoi_noise_2d(coord / wavelength, xrand, yrand);
}
/*
* 3D Simplex noise by Ian McEwan, Ashima Arts.
* Copyright (C) 2011 Ashima Arts. All rights reserved.
* Distributed under the MIT License.
* https://github.com/ashima/webgl-noise
*/
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+10.0)*x);
}
vec4 taylor_inv_sqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise_3d(vec3 v)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylor_inv_sqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.5 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 105.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}