/* * This is a library of noise functions, taking a coordinate vector and * a wavelength as input and returning a number [0:1] as output. * - Noise2D() is 2d Perlin noise. * - Noise3D() is 3d Perlin noise. * - DotNoise2D() is sparse dot noise and takes a dot density parameter. * - DropletNoise2D() is sparse dot noise modified to look like liquid and * takes a dot density parameter. * - VoronoiNoise2D() is a function mapping the terrain into random domains, * based on Voronoi tiling of a regular grid distorted with xrand and yrand. * - SlopeLines2D() computes a semi-random set of lines along the direction of * steepest descent, allowing to simulate e.g. water erosion patterns. * - Strata3D() computes a vertically stratified random pattern, appropriate * e.g. for rock textures * * Thorsten Renk 2014 */ #version 330 core float rand_1d(float n) { return fract(sin(n) * 43758.5453123); } float rand_2d(vec2 co) { return fract(sin(dot(co.xy, vec2(12.9898,78.233))) * 43758.5453); } float rand_3d(vec3 co) { return fract(sin(dot(co.xyz, vec3(12.9898,78.233,144.7272))) * 43758.5453); } float cosine_interpolate(float a, float b, float x) { float ft = x * 3.1415927; float f = (1.0 - cos(ft)) * 0.5; return a * (1.0 - f) + b * f; } float simple_interpolate(float a, float b, float x) { return a + smoothstep(0.0, 1.0, x) * (b - a); } float interpolated_noise_2d(vec2 coord) { float x = coord.x; float y = coord.y; float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float v1 = rand_2d(vec2(integer_x, integer_y)); float v2 = rand_2d(vec2(integer_x + 1.0, integer_y)); float v3 = rand_2d(vec2(integer_x, integer_y + 1.0)); float v4 = rand_2d(vec2(integer_x + 1.0, integer_y + 1.0)); float i1 = simple_interpolate(v1, v2, fractional_x); float i2 = simple_interpolate(v3, v4, fractional_x); return simple_interpolate(i1, i2, fractional_y); } float interpolated_noise_3d(vec3 coord) { float x = coord.x; float y = coord.y; float z = coord.z; float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float integer_z = z - fract(z); float fractional_z = z - integer_z; float v1 = rand_3d(vec3(integer_x, integer_y, integer_z)); float v2 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z)); float v3 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z)); float v4 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z)); float v5 = rand_3d(vec3(integer_x, integer_y, integer_z + 1.0)); float v6 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z + 1.0)); float v7 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z + 1.0)); float v8 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z + 1.0)); float i1 = simple_interpolate(v1, v5, fractional_z); float i2 = simple_interpolate(v2, v6, fractional_z); float i3 = simple_interpolate(v3, v7, fractional_z); float i4 = simple_interpolate(v4, v8, fractional_z); float ii1 = simple_interpolate(i1, i2, fractional_x); float ii2 = simple_interpolate(i3, i4, fractional_x); return simple_interpolate(ii1, ii2, fractional_y); } float noise_2d(vec2 coord, float wavelength) { return interpolated_noise_2d(coord / wavelength); } float noise_3d(vec3 coord, float wavelength) { return interpolated_noise_3d(coord / wavelength); } float voronoi_noise_2d(vec2 coord, float xrand, float yrand) { float x = coord.x; float y = coord.y; float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float val[4]; val[0] = rand_2d(vec2(integer_x, integer_y)); val[1] = rand_2d(vec2(integer_x+1.0, integer_y)); val[2] = rand_2d(vec2(integer_x, integer_y+1.0)); val[3] = rand_2d(vec2(integer_x+1.0, integer_y+1.0)); float xshift[4]; xshift[0] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y)) - 0.5); xshift[1] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y)) -0.5); xshift[2] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y+1.0))-0.5); xshift[3] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.0))-0.5); float yshift[4]; yshift[0] = yrand * (rand_2d(vec2(integer_x, integer_y +0.5)) - 0.5); yshift[1] = yrand * (rand_2d(vec2(integer_x+1.0, integer_y+0.5)) -0.5); yshift[2] = yrand * (rand_2d(vec2(integer_x, integer_y+1.5))-0.5); yshift[3] = yrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.5))-0.5); float dist[4]; dist[0] = sqrt((fractional_x + xshift[0]) * (fractional_x + xshift[0]) + (fractional_y + yshift[0]) * (fractional_y + yshift[0])); dist[1] = sqrt((1.0 -fractional_x + xshift[1]) * (1.0-fractional_x+xshift[1]) + (fractional_y +yshift[1]) * (fractional_y+yshift[1])); dist[2] = sqrt((fractional_x + xshift[2]) * (fractional_x + xshift[2]) + (1.0-fractional_y +yshift[2]) * (1.0-fractional_y + yshift[2])); dist[3] = sqrt((1.0-fractional_x + xshift[3]) * (1.0-fractional_x + xshift[3]) + (1.0-fractional_y +yshift[3]) * (1.0-fractional_y + yshift[3])); int i_min; float dist_min = 100.0; for (int i = 0; i < 4; ++i) { if (dist[i] < dist_min) { dist_min = dist[i]; i_min = i; } } return val[i_min]; } float voronoi_noise_2d(vec2 coord, float wavelength, float xrand, float yrand) { return voronoi_noise_2d(coord / wavelength, xrand, yrand); } /* * 3D Simplex noise by Ian McEwan, Ashima Arts. * Copyright (C) 2011 Ashima Arts. All rights reserved. * Distributed under the MIT License. * https://github.com/ashima/webgl-noise */ vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+10.0)*x); } vec4 taylor_inv_sqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise_3d(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0); const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylor_inv_sqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.5 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 105.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); }