- Ground network slow-down finally works as expected
(although occasionally causing a traffic jam)
- Hold position instruction now really sets speed to zero, in addition
it actually works now for crossing and two-way traffic
- Attempt to limit execution time of ground network trace algorithm
to make performance acceptable at high-density networks
- Removed remaining terminal messages
- Various minor tweaks and clean-ups
- Moved AIModels/Traffic Manager related AI functions to a new file
- Rewrote the traffic manager so that the containers use pointers to
objects instead of the objects themselves, which will allow for a
more flexible memory management.
- Rewrote parts of the airport groundnetwork code, also because the
stl containers now contain object pointers instead of the objects
themselves.
- Fixed an uninitialized iterator in the AI distance tracking code
- Fixed flawed logic in some of the traffic controller's while loops
- Added a tower controller, which paces take-off behavior of AITraffic
in a more realistic way.
- Various other minor fixes and fine tuning.
maintain a resonable distance from each other while taxiing on the same
route. The current code does not yet take crossing routes or aircraft
taxiing into opposite directions into account.
work for ground based distance separation of AIAircraft.
Traffic manager initialization related changes:
- Schedules initialize "on the fly", instead of during initialization
- Invalid routes are no longer deleted, but marked as BOGUS and ignored
- Changed loading order from a distance based prioritization to a point-
score based prioritization, resulting in a much faster establisment of
AIAircraft near the user's plane.
Preparatory work for ground-based separation of Aircraft.
- The groundnetwork findShrortestRoute function not only returns a list
of waypoints, but also a list of taxi "segments" (a.k.a. taxiways).
- The taxiway list is stored in the Flightplan, and updated everytime
a new taxi leg is created.
using Curt's new speed adjustment code. 2) Separated the function
FlightPlanCreateCruise() into a new source file in preparation of a more
elaborate airway following scheme.
and tgt_altitude -> tgt_altitude_ft. Also fix a comment in AIBase.hxx
indicating that the altitude is in meters, even though the usage throughout the
code was most definitely feet.
- In AIMultiplayer.cxx, update the altitude_ft variable so that the altitude
is reported correctly in the entity's property subtree.
- In AIMultiplayer.cxx, compute a velocity value in kts to fill in the speed
entry in the entity's property subtree. Note, this is not an earth centered
reference speed, not an indicated speed and not a speed relative to the local
airmass (that would be much harder to do.)
AI aircraft are out of range or the piloted aircraft has no radar system.
These computation include range, bearing, and angular offset relative to the
piloted aircraft. This gives some external script the control the behavior
of the AI aircraft relative to the piloted aircraft without requiring a radar
system, and without requiring the AI aircraft to be within radar range.
flightplan. Such aircraft are given some initial conditions that they
fly with. They proceed on in "freeflight" mode indefinitely. For example,
there is a refueling demo where the tanker starts at 3000', 280 kts, and
in a 15 degree bank, and then continues to orbit indefinitely.
For these aircraft with no flightplan, I have added several control nodes in
controls/flight that allow a script or menu or external application to set
heading, altitude, bank angle, and speed. This permits some level of interactive
or scripted control over AI aircraft.
src/AIModel/AIAircraft.cxx src/ATC/AILocalTraffic.cxx
src/FDM/flight.cxx src/FDM/flight.hxx src/FDM/groundcache.cxx
src/FDM/groundcache.hxx src/Main/fg_init.cxx src/Main/main.cxx
src/Scenery/hitlist.cxx src/Scenery/hitlist.hxx
src/Scenery/scenery.cxx src/Scenery/scenery.hxx
Make use of the attached SGMaterial reference userdata on scenegraph
leafs. Make the SGMaterial pointer available to the ground query
routines.
SGPropertyNode to guarded ones. This is also done for JSBSim/JSBSim.hxx,
for which JSB had given explicit permission a while ago. I postponed that
back then, but now is the time.
"Bug Fix - amend the code so that JSBSIm can have more than one tanker in
the environment at the same time. A nasal script has to be added to each
aar-capable JSBSim model to complete this fix."
"Add Air to Air TACAN and User-User refuelling over the Multiplayer Network.
With this change, your TACAN instrument can be tuned to the channel of a
Multiplayer ac. It also activates fuel flow between User and User aircraft
when they are less than 50 ft apart. To participate in multiplayer as a
tanker, all you require to do is to use the callsign MOBIL* (where * is some
number) on the net. Only MOBIL1, MOBIL2 and MOBIL3 have been assigned TACAN
channels, but any MOBIL callsign will be able to give fuel."
"Preparations for an upgrade to Air-to-Air Refuelling to allow more than one
tanker in the environment at a time. This will only work with YASim models.
JSBSim models are unaffected by this change."
I've got some updates for the soaring scenario that will make for a more
realistic (and fun) experience. They are:
1) A cap cloud, which will sit atop each thermal
2) A thermal scenario with wide coverage around KSFO, and using cap clouds
3) A one-line change to AIThermal.cxx to position cap cloud properly
4) Schweizer 2-33 set file change to match cloud coverage with thermal
heights.
files:
1) data/Models/Geometry/thermalcap.ac
2) data/Models/Geometry/thermalcap.xml
3) data/Models/Geometry/thermal_cap.rgb
4) data/AI/thermal_demo.xml
5) data/Aircraft/sgs233/sgs233-set.xml
6) source/src/AIModel/AIThermal.cxx
*** or, if you prefer diffs ***
7) aimodel.diff
"Add Air to Air TACAN. With this facility TACAN equipped aircraft can
measure the range and bearing of TACAN equipped AI Aircraft. ATM there is
only one assigned - callsign ESSO1 on TACAN channel 039X, but this can be
easily expanded to include other c/s channel # pairs - just ask me if you
want more."
When AIFlightPlanCreateTaxi() function is called with the firstFlight
argument set to true, this is supposed to handle situations where the
the aircraft's timetable indicates it should have left between about 5 to
20 minutes earlier. In the previous version, all these aircraft started
taxiing from the first parking location available in the network, due
to the fact that the variable gateId was not assigned a value. In this
patch, route tracing starts from an assigned gate and the network node
following code is fast forwarded to a random location along the taxiways
to give a more realistic and natural distribution of taxiing aircraft
after startup.
This patch further addresses some weird ballet-dancing behavior that
aircraft were showing just prior to/right after parking and which was
related to a number of more or less duplicate waypoints in the transition
from createTaxi() to createParking() to createPushBack() to createTaxi().
Finally, a blatant typing error in the getParking() function was fixed.
at (lon, lat) coordinates -1000,0. This patch fixes the AIModels/Traffic
Manager side of things. The AIModels subsystems allowed the creation of
AIAircraft with non-existent 3D models. If such a model didn't exist, the
aip class didn't get initialized, resulting in the above-mentioned bogus
position information. Here I circumvent this problem by a) only interacting
with the tile loader if the model is visible (and hence has succesfully been
initialized) and b) by disallowing the traffic manager to create AIAircraft
objects if the path to the 3D model doesn't exist.
aircraft models this is only called if they are loaded as AI, not if they
are the model flown by the human pilot. This has technical reasons (too
soon for Nasal/fg), but is useful to distinguish AI and non-AI use, for
example to set a different livery for AI models, or to set different
animation properties.