the ascii scenery file format has actually worked in quite some time, and the
ADA runway light code has been supersceded by a slightly different mechanism.
scene management code and organizing it within simgear. My strategy is
to identify the code I want to move, and break it's direct flightgear
dependencies. Then it will be free to move over into the simgear package.
- Moved some property specific code into simgear/props/
- Split out the condition code from fgfs/src/Main/fg_props and put it
in it's own source file in simgear/props/
- Created a scene subdirectory for scenery, model, and material property
related code.
- Moved location.[ch]xx into simgear/scene/model/
- The location and condition code had dependencies on flightgear's global
state (all the globals-> stuff, the flightgear property tree, etc.) SimGear
code can't depend on it so that data has to be passed as parameters to the
functions/methods/constructors.
- This need to pass data as function parameters had a dramatic cascading
effect throughout the FlightGear code.
The one to fg_init.cxx initialises the AI subsystem regardless of whether it's enabled or not so that later enabling by the user doesn't crash it, and the one to main.cxx avoids running the ATC manager and ATC display system unless enabled.
This is just a port of an old 3D HUD patch to the new view code.
This pans the HUD with the view, by pasting it onto a quad fixed in front of the viewer. It also fixes the awful, arbitrary scaling problems the HUD code has. The old HUD only looks right when viewed at 1024x768 and 55 degree FOV. This works the scale out magically so that it looks right in all views. It also redefines the "<compression-factor>" tag in the ladder to (1) mean compression instead of expansion and (2) have non-psychopathic units (now "1" means 1 degree per degree). Fix this in your existing HUD ladder files before reporting bugs. It's definitely a cosmetic win -- the velocity vector points at the right thing and the horizon lines up properly.
Norman wrote:
I have created a modified version of Andy's patch that implements the 3D HUD as the 'normal' and the 2D HUD as the 'minimal' HUD. < i > and < shift I > keys
Some more cmall changes to the SimGear header files and removed the
SG_HAVE_NATIVE_SGI_COMPILERS dependancies from FlightGear.
I've added a seperate JSBSim patch for the JSBSim source tree.
experimental lighting rendering (which is very expensive on my
machine, for example). To use distance attenuation,
/sim/rendering/distance-attenuation must also be true.
It adds a command line options to enable/disbale distance attenuation
using a property rather than using a #define inside the code. It also
adds a small change for systems that don't support the OpenGL extension,
so that the lights *do* fade away as they get furher away but they don't
get smaller in size.
I have updated the lighting code to use fog to try to fade the runway lights
in smoothly, but still keep them from being visible until you are about 7-10
miles out, and then only have them be very faint at first. I think what I
have is a bit nicer than before since it completely avoids the "popping" effect,
but I've very open to tweaking the actual ranges based on people's real
world experiences.
The general idea is to help clean up some aspects of the FDM init and be
able to provide startup conditions in a less ambiguous manner.
Previously, things like positions, orientations, and velocites were set on
"the bus". These had to be read by the FDMs which then were supposed to
initialized themselves to those values and turn write around and start
modifying those values. It was messy and cumbersome.
Now, all the initial fdm conditions are written to a sub-[property-]tree
under /sim/presets/
The values in /sim/presets/ always stay set to what the user has specified.
The user can change these at his/her liesure, and then request a "reset"
which will reset to the new conditions. I don't even want to say how this
worked before. :-)
Now, an script, or gui interface can stage a set of initial conditions while
the sim is running (without disrupting it), and then call "reset" to commit
the change.
People who should worry about all this are FDM writters, and a small few
others who care about over all program structure and flow.
The biggest and coolest patch adds mouse sensitivity to the 3D
cockpits, so we can finally work the radios. This ended up requiring
significant modifications outside of the 3D cockpit code. Stuff folks
will want to look at:
+ The list of all "3D" cockpits is stored statically in the
panelnode.cxx file. This is clumsy, and won't migrate well to a
multiple-aircraft feature. Really, there should be a per-model list
of 3D panels, but I couldn't find a clean place to put this. The
only handle you get back after parsing a model is a generic ssg
node, to which I obviously can't add panel-specific methods.
+ The aircraft model is parsed *very* early in the initialization
order. Earlier, in fact, than the static list of allowable command
bindings is built in fgInitCommands(). This is bad, as it means
that mouse bindings on the instruments can't work yet. I moved the
call to fgInitCommands, but someone should look carefully to see
that I picked the right place. There's a lot of initialization
code, and I got a little lost in there... :)
+ I added yet another "update" hook to the fgRenderFrame routine to
hook the updates for the 3D panels. This is only required for
"mouse press delay", and it's a fairly clumsy mechanism based on
frame rate instead of real time. There appears to be delay handling
already in place in the Input stuff, and there's a discussion going
on about different mouse behavior right now. Maybe this is a good
time to unify these two (now three) approaches?