Add FGPredictor class to xmlauto. Add support for horizontal navigation based
on flight track as opposed to heading. Add crosstrack-error support to nav.
Simplify error adjust calculation for horizontal nav (better interception).
Fixed potential divide by zero that was producing nan issues in the xmlauto
code.
I've done som more work on the gps instrument.
- You can now input airport-, nav- or fix-ID to select a waypoint.
- You have to specify either "airport", "nav" or "fix" in the waypoint-type
property (some fixes and navs have identical IDs).
- Formatted the time to waypoint output.
- Cleaned up and changed some propery names (wp-heading -> wp-bearing).
- I've also added a name member to the FGNav class so that the gps instrument
can get the name of the nav.
- Changed the airport name parsing in simple.cxx.
I've done some changes to xmlauto.cxx.
Only calculate the derivate filtering if derivate time Td is greater than
zero. This means that one can set Td=0.0 in the xml file to completely remove
the derivate action. (Setting Td to zero in the current version would lead to
a division by zero and crash.)
Setting the integrator time Ti to zero doesn't make sense, right! I've
modified so that setting Ti to zero results in the integral action being
completely removed.
null space without killing the engine (hardware specific problem.)
- NMEA output: I'm slightly confused but it appears that a real GPS outputs
traditional unix line endings on it's gps strings, we were outputing DOS
CR/LF which was causing some confusion. This changes the line ending
convention to match that of a real gps.
- Calculate true ground track and speed for NMEA.
explicitely. This value has always been feet, but there were a couple places
in the code that assumed this elevation was meters. The result was that you
could park directly over the top of the Black Forest VOR (112.50) NE of KCOS
and get a dme reading of 2.5 or so. This problem is now resolved.
I added some things to the AI stuff to improve the AIThermal processing.
Before, all the thermals were processed in order, and the last one overwrote
the prior one. Now, only the data from the nearest thermal is kept. This
way a tile can be populated with many thermals, and (as long as they have the
same diameter) the one nearest the airplane correctly takes effect. This
will make us ready for the next step, "auto-thermaling", where FlightGear's
tile manager can cover a tile with thermals, and set the thermal strength
based on land-use type.
I moved the enumerated object_type to the base class. When an AI object is
created it now sets the _otype variable in the base class. This lets the AI
manager find out what kind of AI object it is dealing with, using the base
pointer. I also added a function isa() to the base class, so the manager can
process objects differently based on their type.
The AI manager now sends AIThermal processing to a different function, where
only the data from the nearest thermal is kept. After the manager processes
all the AI objects, then the results from the nearest thermal are applied to
wind-from-down.
occasionally cause a large number of valid stations to be flagged as invalid.
This *seemed* like a "race condition" type problem because there were some
assumptions in the communication between the main process and the threaded
loader which if they broke down could lead to this problem.
In the process of removing this ambiguity, I restructured the threaded
(and non-threaded) metar fetching code a bit. Some of the top level logic
(which Erik politely left untouched) didn't make nearly as much sense in the
context of a threaded metar loader and could have contributed to some of the
wierdness I was seeing.
Here's a new batch of AI code which includes a working radar instrument.
I put the radar calculations into the existing AIAircraft class. It was
easier that way, and it can always be migrated out later if we have to.
Every tenth sim cycle the AIManager makes a copy of the current user state
information. When the AIAircraft updates it uses this information to
calculate the radar numbers. It calculates:
1) bearing from user to target
2) range to target in nautical miles
3) "horizontal offset" to target. This is the angle from the nose to the
target, in degrees, from -180 to 180. This will be useful later for a HUD.
4) elevation, in degrees (vertical angle from user's position to target
position)
5) vertical offset, in degrees (this is elevation corrected for user's pitch)
6) rdot (range rate in knots, note: not working yet, so I commented it out)
and three items used by the radar instrument to place the "blip"
7) y_shift, in nautical miles
8) x_shift, in nautical miles
9) rotation, in degrees
The radar instrument uses the above three items, and applies a scale factor to
the x-shift and y-shift in order to match the instrument's scale. Changing
the display scale can be done entirely in the XML code for the instrument.
Right now it's set up only to display a 40 mile scale.
The radar is an AWACS view, which is not very realistic, but it is useful and
demonstrates the technology. With just a little more work I can get a HUD
marker. All I need to do there is make a bank angle adjustment to the
current values.