Here's the newest AI stuff.
The AIManager at init() creates a new scenario. Right now the
default_scenario is hard coded in, but eventually the AIManager should get
the scenario filename from preferences.xml.
The scenario defines which AI objects will be created. Right now it only
creates AIAircraft, but this is easily extended. The scenario also defines
which flightplan will be assigned to the airplane. Scenario config files go
in data/Data/AI.
The Airplane gets a pointer to a FlightPlan object. Each airplane should get
its own flightplan object, even if two airplanes have the same flight plan.
This is because the flightplan maintains the iterator pointing to the
current waypoint, and two airplanes might be at different locations (for
instance if they were created at different times). The flight plan files go
in data/Data/AI/FlightPlans.
When the airplane gets to the waypoint named "END" it vanishes. The
AIAircraft destructor deletes its flight plan (if it has one).
The last waypoint is a place holder only. I called mine
<WPT><NAME>"EOF"</NAME></WPT>.
little larger.
The text widget can now be meaningfully associated with a property; in
PUI, it's "value" isn't the same thing as its label, but we can hack
things to treat them symmetrically.
Commit an experimental "live" property that can be set on widgets to
cause them to update their values every frame. This works great for
text widgets, as above. Note that this synchronization is input-only:
no support is provided (or needed -- the GUI only changes when the
user does something) for writing those properties out every frame.
the 30 seconds that Maik had originally intended, according to the comment.
This is important for the pending sound and rotor disc changes (and of course
for realism).
Fix the leg distance calculation to display nautical miles instead of meters.
It turns out that Simgear already has a range normalize function, so I use
that one instead.
for a while, it turned out to be pretty easy to implement. Also, the
property picker is now non-modal, I presume the modality wasn't an
intentional feature.
I've added a vertical navigation capability to the GPS module. One can input
two waypoints, wp[0] and wp[1], with altitude. If the altitudes differ, then
the altitude deviation from a "straigth" line from wp[0] to wp[1] is
calculated. The true course and course deviation from wp[0] to wp[1] is also
calculated. All this can be found in the wp subdir where one also finds the
wp[0] and wp[1] subdirs.
All this has to be done through the property browser. Maybe I should make a
gui window for the GPS!
"slow/windmilling propeller" regime. I'm happy with the foundations
of the solution, but this hasn't been complete tested yet. The
solution behavior seems fine on the planes I tried.
PistonEngine class has grown an "Engine" superclass. Some other stuff
moved around too, and I cleaned up some property naming while I was in
there. This hasn't been tested very thorougly, hopefully I didn't
break anything.
configure and compile out-of-the-box on a MinGW target:
Use -lSDL instead of -lglut32 on windows builds when --enable-sdl
is set.
Link against alut.dll in addition to openal32.dll.
Replace BSD bcopy() with ANSI C memmove() in a few places. This is
simpler than trying to abstract it out as a platform dependency in a
header file; bcopy() has never been standard.
The ENABLE_THREADS handling has changed to be set to 0 when threads
are not in use. This breaks expressions like #ifdef ENABLE_THREADS.
Replace with a slightly more complicated expression. It might have
been better to fix the configure.ac script, but I didn't know how and
this whole setting is likely to go away soon anyway.
The MinGW C runtime actually does include snprintf, so only MSVC
builds (and not all WIN32 ones) need _snprintf in JSBSim/FGState.cpp
Building on a platform with no glut at all exposed some spots where
plib/pu.h was being included without a toolkit setting (it defaults to
glut). Include fg_os.hxx first.
And when still using glut, glut.h has a bizarre dependency on a
_WCHAR_T_DEFINED symbol. It it's not defined, it tries to redefine
(!!) wchar_t to disasterous effect.
anymore. Instead Frederic Bouvier suggests to add a <number> tag to
the axis definition which accepts values for <windows> and <unix>
for now but which can be extended later on:
<axis>
<desc>Rudder</desc>
<number>
<unix>2</unix>
<windows>3</windows>
</number>
<binding>
<command>property-scale</command>
<property>/controls/flight/rudder</property>
<offset type="double">0.0</offset>
<factor type="double">1.0</factor>
<power type="double">2.0</power>
</binding>
</axis>
1. The listener is always positioned at the origin.
2. All sounds eminate from the aircraft's model position.
3. Sound positions are relative to the listener location.
I've added a tracking bug to the gps. This is of course very similar to a
heading bug for a DG. I don't know if this is the common name, but I feel
that for a gps the name tracking bug is more accurate than heading bug. A
true bug error and a magnetic bug error is calculated and shifted into the
-180 to 180 range so that they can be used by autopilots.
I've also fixed a property name that crept in when I had to change back to
indicated-***. Back then I accidentally changed the desired course name to
"indicated-course". The property that is supposed to be the input for the
desired course should naturally be named something like "desired-course", and
definitely _not_ "indicated-course". If this name change breaks anything it
should be fixed in the other end.
I've also commented out a lot of #includes that I don't think is needed. I'm
on Suse 9.0 now, and it builds fine here, but this might be a problem for
different platforms I guess we have to cross our fingers.
my code was accidentally drawing the cockpit twice
in view 0. This patch should fix the problem of
lights not seen through canopies or prop discs.
It was also drawing the lights ( ground and rw )
after the clouds, so they were not obscured by
them.