* Some support for geometry information provided by the custom scenery
project. Current support is for AI groundnets and runway use files only
since this is a switch that involves a lot of data verification and
updating, during the transistion the actual path where the data can be
read from is user configurable. setting the property
/sim/traffic-manager/use-custom-scenery-data to true
will cause flightgear to read the ground networks from the scenery
directory (--{fg-scenery}/Airports/[I]/[C]/[A]/[ICAO].groundnet.xml to be
precise). Setting this property to false will retain the original
behvior.
* For departing aircraft, runway takeoff calculations will be done on the
basis of the performance database. For testing purposes, a performance
estimate for a heavy jet has been added.
This patch changes terrasync so it links against the subversion
library if you have it installed. It supports people who build binary
releases for use by non-developers by removing the runtime external
dependency on having command line svn or rsync available. Since the
patch changes autoconf to detect libsvn, I'd appreciate it if people
who release binaries could verify that the detection scripting works
for their platform.
Developer warning: If you do have libsvn developer libraries
installed, terrasync changes its default option from "-R" to "-S" to
remove the command line dependency. However, Martin has not yet
uploaded world scenery into the subversion repository so it won't be
useful to fly against and you may want to specify "-R" on the command
line in the short term. Or run both.
Me: Update MSVC 7.1 project file. Need svn-win32-1.x.y_dev.zip and svn-win32-1.x.y.zip
located at http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100
- Runways are now part of an airport, instead of a separate list
- Runways are no longer represented as a boring struct, but as a class
of their own.
-Improved runway access to unify various runway access methods.
- this exposed a bizarre issue on Mac where dragging in <AGL/agl.h> in
extensions.hxx was pulling in all of Carbon to the global namespace
- very scary. As a result, I now need to explicitly include CoreFoundation
in fg_init.cxx.
- change SG_USING_STD(x) to using std::x
Various other patches that have been lingering around for a while:
* Moved trafficcontrol.[ch]xx from the Airports directory to ATC, where
it really belongs.
* AI aircraft will request startup clearance, and ground control will
approve.
* Starting AI Aircraft will be pushed back to a predefined holding point
on the ground network, and wait a while before taxiing out to the runway
and the pushback code:
- Traffic manager starts modelload requests immediately upon program
loading
- Only create legs 1 (push back) or five (cruise) of AI traffic.
- AIAircraft's rather obsessive behavior to circle around a waypoint is
largely resolved
- More realistic ground steering for AI aircraft.
- Airports Directory
Thomas Foerster: Pulls out the FGTaxiNode implementation into gnnode.cxx.
Melchior / Durk: Copy Constructor and assignment operator for FGTaxiRoute
- AIModels Directory
Durk / Melchior / Czaba Halasz: Ensure that all derived classes use AIBase
member 'callsign'. Adapted, moved and deleted getter/setter functions where
necessary
Czaba Halasz: Fix AIBase model path vs. submodel path consistency.
- Traffic Directory and AIModels CreateFlightPlanCruise
DT: Temporary revert parts of the position estimation code.
data for AI traffic. Default performance classes are still available as a
backup. This database will allow the calculation of aircraft-specific
take-off speed and estimate runway lenght requirements. Further added
rudimentary support for take-off and landing rotation of AIAircraft.
maintain a resonable distance from each other while taxiing on the same
route. The current code does not yet take crossing routes or aircraft
taxiing into opposite directions into account.
"Preparations for an upgrade to Air-to-Air Refuelling to allow more than one
tanker in the environment at a time. This will only work with YASim models.
JSBSim models are unaffected by this change."
"Add Air to Air TACAN. With this facility TACAN equipped aircraft can
measure the range and bearing of TACAN equipped AI Aircraft. ATM there is
only one assigned - callsign ESSO1 on TACAN channel 039X, but this can be
easily expanded to include other c/s channel # pairs - just ask me if you
want more."
This patch removes some useless indirection when creating AIModels. It
obsolets AIScenario*.
AIEntities are just an intermediate copy of an other intermediate copy of an
xml file on the way from the ai scenario configuration file to the AIModels.
As such the AImodels can now be created directly from the property tree read
from the scenario file.
This reduces the amount of work needed to add an other AIModel and reduces the
amount of copy operations done during initialization.
It also moves internal knowledge of special AI models into these special AI
models class instead of spreading that into the whole AIModel subdirectory
which in turn enables to use carrier internal data structures for carrier
internal data ...
Also some unused variables are removed from the AIModel classes.
I believe that there are still more of them, but that is what I stumbled
accross ...
Tested, like the other splitouts these days in a seperate tree and using the
autopilot for some time, and in this case with a carrier start ...
- Feet to meter conversion mistake (in AI getGround elev)
- Improved ground following code (not yet perfect, but for now no one will
notice it within the marginal altitiude differences at the taxitrack or
runway)
- Exclusion of the "AI" directory witihin data/Aircraft in
main/init/fgSearchAircraft, to prevent AI aircraft to be picked up by the
aircraft search function
I tried to make sure accessor functions which return by reference act
on const objects. also replaced some iterators with const_iterator
and a few return/pass by reference that were missed the first time
around.
I added an AIStatic object to my OV-10 sim for use in putting city signs,
vehicles, or anything else that will be static, but that I don't want to put
in the scenery files. It's inexpensive. Before, I was making such things
from AIShip.
I also added the ability to set flight plans to repeat, so that when an
airplane reaches the end it just starts over at the beginning. This is
useful for my OV-10 sim. I have C-141 and KC-135 traffic flying approaches
to Ramstein, and I only have to define two AI objects to do this.
Also, I found an inefficiency in AIBase, where every AI object was calculating
Mach number at every dt. Now only AIBallistic objects do this.
I just heard from John Wojnaroski that you and he are going to work on getting
a flightgear demo machine up for the linux expo thursday and Friday. John
indicated that he would very much like to get a CVS version with the new
traffic code up and running before the expo.
Okay, here's the latest update to the tarffic manager/AI Manager. AITraffic
can now fly multiple routes and be initialized while sitting statically at
airports.
Here's some additions to AI that allow refueling from an AI tanker (the actual
onload of fuel must be handled by the user's FDM of course, this just lets
the FDM know that the user is in position to refuel).
I've added a new class of AIAircraft called "tanker". It uses the same
performance struct as a jet transport. An AI tanker is just like an AI jet
transport, except it uses the already-existing radar data to control the
boolean property systems/refuel/contact. The code change was minimal.
An AI tanker can be created like this:
<entry>
<callsign>Esso 1</callsign>
<type>aircraft</type>
<class>tanker</class>
<model>Aircraft/737/Models/boeing733.xml</model>
<latitude>37.61633</latitude>
<longitude>-122.38334</longitude>
<altitude>3000</altitude>
<heading>020</heading>
<speed>280</speed>
<roll>-15</roll>
</entry>
This puts a tanker over KSFO at 3000 feet, in a left-hand orbit. When the
user gets within refueling range (contact position) then the property
systems/refuel/contact will be true. Otherwise it is false.
The dimensions of the refueling envelope are pretty rough right now, but still
usable. The user must be behind the tanker (ie. radar y_offset > 0). The
user must be at or below the tanker's altitude (ie. radar elevation > 0).
The user's lat/lon must be within 250 feet of the tanker's lat/lon (ie. radar
range_ft < 250). This last requirement is loose because the radar data is
only updated every 100 ms, which is accurate enough for radar use, but
which is sloppy for air refueling. This could be tightened up by increasing
the radar update rate to once every sim cycle.
I'm going to add a light to the T-38 instrument panel that will monitor the
property systems/refuel/contact. This will make it easier to explore the
boundaries of the refueling envelope.
Here's some new AI stuff.
1) AI objects must now be defined in a scenario file, not in preferences.xml
or a *-set file. (Of course this doesn't prevent objects from being created
dynamically, as with Durk's traffic manager).
2) A new demo_scenario file is attached. It creates 3 aircraft, a sailboat,
and a thunderstorm.
3) Objects without flightplans live forever.
4) FGAIShip::ProcessFlightplan() is not yet implemented.
5) preferences.xml should now define only <enabled> and <scenario>
Here's the newest AI stuff.
The AIManager at init() creates a new scenario. Right now the
default_scenario is hard coded in, but eventually the AIManager should get
the scenario filename from preferences.xml.
The scenario defines which AI objects will be created. Right now it only
creates AIAircraft, but this is easily extended. The scenario also defines
which flightplan will be assigned to the airplane. Scenario config files go
in data/Data/AI.
The Airplane gets a pointer to a FlightPlan object. Each airplane should get
its own flightplan object, even if two airplanes have the same flight plan.
This is because the flightplan maintains the iterator pointing to the
current waypoint, and two airplanes might be at different locations (for
instance if they were created at different times). The flight plan files go
in data/Data/AI/FlightPlans.
When the airplane gets to the waypoint named "END" it vanishes. The
AIAircraft destructor deletes its flight plan (if it has one).
The last waypoint is a place holder only. I called mine
<WPT><NAME>"EOF"</NAME></WPT>.
Here's a new batch of AI code which includes a working radar instrument.
I put the radar calculations into the existing AIAircraft class. It was
easier that way, and it can always be migrated out later if we have to.
Every tenth sim cycle the AIManager makes a copy of the current user state
information. When the AIAircraft updates it uses this information to
calculate the radar numbers. It calculates:
1) bearing from user to target
2) range to target in nautical miles
3) "horizontal offset" to target. This is the angle from the nose to the
target, in degrees, from -180 to 180. This will be useful later for a HUD.
4) elevation, in degrees (vertical angle from user's position to target
position)
5) vertical offset, in degrees (this is elevation corrected for user's pitch)
6) rdot (range rate in knots, note: not working yet, so I commented it out)
and three items used by the radar instrument to place the "blip"
7) y_shift, in nautical miles
8) x_shift, in nautical miles
9) rotation, in degrees
The radar instrument uses the above three items, and applies a scale factor to
the x-shift and y-shift in order to match the instrument's scale. Changing
the display scale can be done entirely in the XML code for the instrument.
Right now it's set up only to display a 40 mile scale.
The radar is an AWACS view, which is not very realistic, but it is useful and
demonstrates the technology. With just a little more work I can get a HUD
marker. All I need to do there is make a bank angle adjustment to the
current values.