It fixes the following issues (to a greater or lesser extent):
1) Performance. Quad trees used to improve culling, and the sprites are placed on the surface of a sphere rather than
randomly throughout the cloud, requiring fewer textures. This saves about 5-10fps on my machine.
2) Disabled 3D clouds have no performance impact. Previously they were still in the scenegraph. Now they are removed.
3) Clouds are now loaded on start-up, and don't require the scenario to be changed, they also work with METAR.
4) The cloud field is shifted as you travel. There's a small bug in that the clouds "jump" as you reach the edge of the field.
5) Iterative sorting of sprites. This doesn't appear to solve the alpha blending problem completely, but may help a bit.
Turn OPENSCENEGRAPH_MAJOR_VERSION, OPENSCENEGRAPH_MINOR_VERSION and
OPENSCENEGRAPH_PATCH_VERSION into a single number for comparisons in the
preprocessor.
The prototype of update_metar_properties does not match overridden func.
trafficmgr: iterators below begin() and after end().
tower.cxx : iterator incrementing beyond end().
I tried to make sure accessor functions which return by reference act
on const objects. also replaced some iterators with const_iterator
and a few return/pass by reference that were missed the first time
around.
* Use "const string&" rather than "string" in function calls when appropriate.
* Use "const Point3D&" instead of "Pint3D" in function calls when appropriate.
* Improved course calculation in calc_gc_course_dist()
* Safer thread handling code.
Vassilii Khachaturov:
Dont use "const Point3D&" for return types unless you're absolutely sure.
Erik Hofman:
* Use SGD_(2)PI(_[24]) as defined in simgear/constants.h rather than
calculating it by hand every time.
Attached is a patch to the airport data storage that I would like committed
after review if acceptable. Currently the storage of airports mapped by ID
is by locally created objects - about 12 Meg or so created on the stack if
I am not mistaken. I've changed this to creating the airports on the heap,
and storing pointers to them - see FGAirportList.add(...) in
src/Airports/simple.cxx. I believe that this is probably better practice,
and it's certainly cured some strange problems I was seeing when accessing
the airport data with some gps unit code. Changes resulting from this have
cascaded through a few files which access the data - 11 files are modified
in all. Melchior and Durk - you might want to test this and shout if there
are problems since the metar and traffic code are probably the biggest
users of the airport data. I've also added a fuzzy search function that
returns the next matching airport code in ASCII sequence in order to
support gps units that have autocompletion of partially entered codes.
More generally, the simple airport class seems to have grown a lot with the
fairly recent addition of the parking, runway preference and schedule time
code. It is no longer just an encapsulation of the global airport data
file, and has grown to 552 bytes in size when unpopulated (about 1/2 a K!).
My personal opinion is that we should look to just store the basic data in
apt.dat for all global airports in a simple airport class, plus globally
needed data (metar available?), and then have the traffic, AI and ATC
subsystems create more advanced airports for themselves as needed in the
area of interest. Once a significant number of airports worldwide have
ground networks and parking defined, it will be impractical and unnecessary
to store them all in memory. That's just a thought for the future though.
- replay.cxx :
corrected a bug, now reinitialize the recording data when replay is
deactivated
- fgclouds.cxx :
cloud layers and weather condition are saved when choosing a weather scenario,
added a new scenario 'none' so we can switch back to standard flightgear
weather
- navradio.cxx :
force a search() on init to initialize some variables, preventing a nearly
infinite loop when delta-time == 0 on the first update()
- electrical.cxx :
uninitialized variable in apply_load() for FG_EXTERNAL supplier
- panel.cxx, panelnode.cxx :
added a property "depth-test" for 2.5D panels so that they update the depth
buffer and are no more visible from the outside of the aircraft when the
aircraft uses textures without an alpha channel
- panel.cxx :
moved the computation of the instruments diffuse color outside the
texturelayer code since this is constant during a frame, this is a big speedup
for 2D panels
I did some profiling of the code and found a few interessant things. Some corrections are obvious like the one in the multiplayer code, the fps is no more divided by 2 or 3 when another plane is on screen.
Other things like collision detection and computation of agl can not really be optimized. I changed a few things in hitlist.cxx but this only give a very low increase of fps. The groundcache eats a lot of cpu but I think that the real way to do it is to use a real collision system like OPCODE or something like that.
And I added an option to disable the recording of replay data. It takes more cpu than we can think.
Changes
=======
- panel.cxx :
moved the computation of the instruments diffuse color outside the texturelayer code
since this is constant during a frame, this is a big speedup for 2D panels ;
- hitlist.cxx :
changed the computation of the intersection between ray and triangle, optimized
the sphere culling by using a normalized direction vector. This can give a
35% speedup on the computation of elevation in some situations ;
- renderer.cxx, acmodel.cxx :
call ssgDrawAndCull with plane scene graph in external or internal view,
calling ssgDrawAndCull with the root scene graph was drawing other players plane
a second time in multiplayer mode ;
- mplayer.cxx :
removed the calls to ssgFlatten and ssgStripify because it was degenerating models,
causing a massive drop in frame rate ;
- replay.cxx :
added an option to disable the recording of the flight
- fgclouds.cxx :
changed the path of cloudlayer properties to match preferences.xml ;
set the altitude of clouds from scenarios to a more correct value if metar is not enabled ;
Changes
=======
- correct the transparency probleme when old 3d clouds were enabled
(rendering context with an alpha channel)
- changed rain cone orientation, it can now be viewed from helicopter or chase
view (still not tower view)
- clouds are a bit more yellow/red at dawn/dusk
- weather data is now correctly propagated to the interpolator, this correct
visibility, wind, etc
- the 'metar' weather scenario now immedialty reuse the real metar data
- real metar no more overwrite custom weather scenario
This is another update for the cloud code, a lot of lines but this time I have started to add the doxygen doc.
Misc
====
- corrected a bug when RTT is not available, the current rendering context was
altered
- if RTT is not available then 3d clouds are not drawn at all
- impostors lighting is now recomputed when the sun changes position
- distant objects are no more seen in front of clouds
- blending of distant clouds is a bit better now
- litle optimization of code (uses a less cpu time)
- use layer wind speed and direction (no more hardcoded wind)
- fov is no more hardcoded
Changes
=======
- clouds (cu only) are dissipating/reforming (experimental)
- compute a turbulence factor that depends on surrounding clouds and type of
clouds (experimental)
- clouds shapes are defined in cloudlayers.xml
- type of clouds present in a layer is also defined in cloudlayers.xml
- cloud layers are generated from metar and other misc. data (in progress)
- added a rain effect around the viewer (enabled in the rendering dialog and
when the metar property says so)
- added a lightning effect (enabled in the rendering dialog) : cb clouds spawn
new lightnings
- added a dialog to select from different weather source : metar/property,
a 'fair weather' environment and a 'thunderstorm' environment.