1
0
Fork 0
flightgear/src/Main/viewer_lookat.cxx

220 lines
6.9 KiB
C++
Raw Normal View History

2000-10-26 21:23:38 +00:00
// viewer_lookat.hxx -- class for managing a "look at" viewer in
// the flightgear world.
//
// Written by Curtis Olson, started October 2000.
//
// Copyright (C) 2000 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <simgear/compiler.h>
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <plib/ssg.h> // plib include
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/point3d.hxx>
#include <simgear/math/polar3d.hxx>
#include <simgear/math/vector.hxx>
#include <Scenery/scenery.hxx>
#include "globals.hxx"
#include "viewer_lookat.hxx"
// Constructor
FGViewerLookAt::FGViewerLookAt( void )
{
set_reverse_view_offset(true);
2000-10-26 21:23:38 +00:00
}
2000-11-01 02:30:10 +00:00
void fgMakeLookAtMat4 ( sgMat4 dst, const sgVec3 eye, const sgVec3 center,
const sgVec3 up )
{
// Caveats:
// 1) In order to compute the line of sight, the eye point must not be equal
// to the center point.
// 2) The up vector must not be parallel to the line of sight from the eye
// to the center point.
/* Compute the direction vectors */
sgVec3 x,y,z;
/* Y vector = center - eye */
sgSubVec3 ( y, center, eye ) ;
/* Z vector = up */
sgCopyVec3 ( z, up ) ;
/* X vector = Y cross Z */
sgVectorProductVec3 ( x, y, z ) ;
/* Recompute Z = X cross Y */
sgVectorProductVec3 ( z, x, y ) ;
/* Normalize everything */
sgNormaliseVec3 ( x ) ;
sgNormaliseVec3 ( y ) ;
sgNormaliseVec3 ( z ) ;
/* Build the matrix */
#define M(row,col) dst[row][col]
M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0;
M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0;
M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0;
M(3,0) = eye[0]; M(3,1) = eye[1]; M(3,2) = eye[2]; M(3,3) = 1.0;
2000-10-26 21:23:38 +00:00
#undef M
}
// convert sgMat4 to MAT3 and print
static void print_sgMat4( sgMat4 &in) {
int i, j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
printf("%10.4f ", in[i][j]);
}
cout << endl;
}
}
// Update the view parameters
void FGViewerLookAt::update() {
Point3D tmp;
sgVec3 minus_z;
2000-10-26 21:23:38 +00:00
// calculate the cartesion coords of the current lat/lon/0 elev
Point3D p = Point3D( geod_view_pos[0],
geod_view_pos[1],
sea_level_radius );
tmp = sgPolarToCart3d(p) - scenery.center;
sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
2001-03-24 04:56:46 +00:00
if ( geod_view_pos[2] > (scenery.cur_elev + 0.5 * SG_METER_TO_FEET) ) {
2000-10-26 21:23:38 +00:00
p.setz( p.radius() + geod_view_pos[2] );
} else {
2001-03-24 04:56:46 +00:00
p.setz( p.radius() + scenery.cur_elev + 0.5 * SG_METER_TO_FEET );
2000-10-26 21:23:38 +00:00
}
tmp = sgPolarToCart3d(p);
sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
// view_pos = abs_view_pos - scenery.center;
sgdVec3 sc;
sgdSetVec3( sc, scenery.center.x(), scenery.center.y(), scenery.center.z());
sgdVec3 vp;
sgdSubVec3( vp, abs_view_pos, sc );
sgSetVec3( view_pos, vp );
2000-11-01 02:30:10 +00:00
sgAddVec3( view_pos, pilot_offset );
2000-10-26 21:23:38 +00:00
2001-03-24 06:03:11 +00:00
SG_LOG( SG_VIEW, SG_DEBUG, "sea level radius = " << sea_level_radius );
SG_LOG( SG_VIEW, SG_DEBUG, "Polar view pos = " << p );
SG_LOG( SG_VIEW, SG_DEBUG, "Absolute view pos = "
2000-10-26 21:23:38 +00:00
<< abs_view_pos[0] << ","
<< abs_view_pos[1] << ","
<< abs_view_pos[2] );
2001-03-24 06:03:11 +00:00
SG_LOG( SG_VIEW, SG_DEBUG, "Relative view pos = "
2000-10-26 21:23:38 +00:00
<< view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
2001-03-24 06:03:11 +00:00
SG_LOG( SG_VIEW, SG_DEBUG, "pilot offset = "
2000-11-01 02:30:10 +00:00
<< pilot_offset[0] << "," << pilot_offset[1] << ","
<< pilot_offset[2] );
2001-03-24 06:03:11 +00:00
SG_LOG( SG_VIEW, SG_DEBUG, "view forward = "
2000-10-26 21:23:38 +00:00
<< view_forward[0] << "," << view_forward[1] << ","
<< view_forward[2] );
2001-03-24 06:03:11 +00:00
SG_LOG( SG_VIEW, SG_DEBUG, "view up = "
2000-10-26 21:23:38 +00:00
<< view_up[0] << "," << view_up[1] << ","
<< view_up[2] );
// Make the VIEW matrix.
2000-11-01 02:30:10 +00:00
fgMakeLookAtMat4( VIEW, view_pos, view_forward, view_up );
2000-10-26 21:23:38 +00:00
// cout << "VIEW matrix" << endl;
// print_sgMat4( VIEW );
// the VIEW matrix includes both rotation and translation. Let's
// knock out the translation part to make the VIEW_ROT matrix
sgCopyMat4( VIEW_ROT, VIEW );
VIEW_ROT[3][0] = VIEW_ROT[3][1] = VIEW_ROT[3][2] = 0.0;
// Make the world up rotation matrix
sgMakeRotMat4( UP,
2001-03-24 04:48:44 +00:00
geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
2000-10-26 21:23:38 +00:00
0.0,
2001-03-24 04:48:44 +00:00
-geod_view_pos[1] * SGD_RADIANS_TO_DEGREES );
2000-10-26 21:23:38 +00:00
// use a clever observation into the nature of our tranformation
// matrix to grab the world_up vector
sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
// cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
// << world_up[2] << endl;
//!!!!!!!!!!!!!!!!!!!
// THIS IS THE EXPERIMENTAL VIEWING ANGLE SHIFTER
// THE MAJORITY OF THE WORK IS DONE IN GUI.CXX
// this in gui.cxx for now just testing
2001-01-08 22:01:24 +00:00
extern float GuiQuat_mat[4][4];
sgPreMultMat4( VIEW, GuiQuat_mat);
2000-10-26 21:23:38 +00:00
// !!!!!!!!!! testing
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
sgSetVec3( minus_z, 0.0, 0.0, -1.0 );
sgmap_vec_onto_cur_surface_plane(world_up, view_pos, minus_z,
surface_south);
sgNormalizeVec3(surface_south);
// cout << "Surface direction directly south " << surface_south[0] << ","
// << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
#define USE_FAST_SURFACE_EAST
#ifdef USE_FAST_SURFACE_EAST
sgVec3 world_down;
sgNegateVec3(world_down, world_up);
sgVectorProductVec3(surface_east, surface_south, world_down);
#else
2001-03-24 04:48:44 +00:00
sgMakeRotMat4( TMP, SGD_PI_2 * SGD_RADIANS_TO_DEGREES, world_up );
2000-10-26 21:23:38 +00:00
// cout << "sgMat4 TMP" << endl;
// print_sgMat4( TMP );
sgXformVec3(surface_east, surface_south, TMP);
#endif // USE_FAST_SURFACE_EAST
// cout << "Surface direction directly east " << surface_east[0] << ","
// << surface_east[1] << "," << surface_east[2] << endl;
// cout << "Should be close to zero = "
// << sgScalarProductVec3(surface_south, surface_east) << endl;
set_clean();
}
// Destructor
FGViewerLookAt::~FGViewerLookAt( void ) {
}