1
0
Fork 0
flightgear/src/AIModel/AIShip.cxx

290 lines
7.7 KiB
C++
Raw Normal View History

// FGAIShip - FGAIBase-derived class creates an AI ship
//
// Written by David Culp, started October 2003.
// - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
2006-02-21 01:16:04 +00:00
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/point3d.hxx>
#include <math.h>
#include "AIFlightPlan.hxx"
#include "AIShip.hxx"
FGAIShip::FGAIShip(object_type ot) : FGAIBase(ot) {
}
FGAIShip::~FGAIShip() {
}
void FGAIShip::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode)
return;
FGAIBase::readFromScenario(scFileNode);
setRudder(scFileNode->getFloatValue("rudder", 0.0));
setName(scFileNode->getStringValue("name", "Titanic"));
std::string flightplan = scFileNode->getStringValue("flightplan");
if (!flightplan.empty()){
FGAIFlightPlan* fp = new FGAIFlightPlan(flightplan);
setFlightPlan(fp);
}
}
bool FGAIShip::init(bool search_in_AI_path) {
hdg_lock = false;
rudder = 0.0;
no_roll = false;
rudder_constant = 0.5;
roll_constant = 0.001;
speed_constant = 0.05;
hdg_constant = 0.01;
return FGAIBase::init(search_in_AI_path);
}
void FGAIShip::bind() {
FGAIBase::bind();
props->tie("surface-positions/rudder-pos-deg",
SGRawValuePointer<float>(&rudder));
props->tie("controls/heading-lock",
SGRawValuePointer<bool>(&hdg_lock));
props->tie("controls/tgt-speed-kts",
SGRawValuePointer<double>(&tgt_speed));
props->tie("controls/tgt-heading-degs",
SGRawValuePointer<double>(&tgt_heading));
props->tie("controls/constants/rudder",
SGRawValuePointer<double>(&rudder_constant));
props->tie("controls/constants/roll",
SGRawValuePointer<double>(&roll_constant));
props->tie("controls/constants/rudder",
SGRawValuePointer<double>(&rudder_constant));
props->tie("controls/constants/speed",
SGRawValuePointer<double>(&speed_constant));
props->setStringValue("name", name.c_str());
}
void FGAIShip::unbind() {
FGAIBase::unbind();
props->untie("surface-positions/rudder-pos-deg");
props->untie("controls/heading-lock");
props->untie("controls/tgt-speed-kts");
props->untie("controls/tgt-heading-degs");
props->untie("controls/constants/roll");
props->untie("controls/constants/rudder");
props->untie("controls/constants/speed");
}
void FGAIShip::update(double dt) {
FGAIBase::update(dt);
Run(dt);
Transform();
}
void FGAIShip::Run(double dt) {
if (fp) ProcessFlightPlan(dt);
double sp_turn_radius_ft;
double rd_turn_radius_ft;
double speed_north_deg_sec;
double speed_east_deg_sec;
double dist_covered_ft;
double alpha;
double rudder_limit;
double raw_roll;
// adjust speed
double speed_diff = tgt_speed - speed;
if (fabs(speed_diff) > 0.1) {
if (speed_diff > 0.0) speed += speed_constant * dt;
if (speed_diff < 0.0) speed -= speed_constant * dt;
}
// convert speed to degrees per second
speed_north_deg_sec = cos( hdg / SGD_RADIANS_TO_DEGREES )
* speed * 1.686 / ft_per_deg_lat;
speed_east_deg_sec = sin( hdg / SGD_RADIANS_TO_DEGREES )
* speed * 1.686 / ft_per_deg_lon;
// set new position
2006-06-15 08:29:43 +00:00
pos.setLatitudeDeg( pos.getLatitudeDeg() + speed_north_deg_sec * dt);
pos.setLongitudeDeg( pos.getLongitudeDeg() + speed_east_deg_sec * dt);
// adjust heading based on current rudder angle
2005-08-18 09:17:39 +00:00
if (rudder <= -0.25 || rudder >= 0.25) {
/* turn_radius_ft = 0.088362 * speed * speed
/ tan( fabs(rudder) / SG_RADIANS_TO_DEGREES );
turn_circum_ft = SGD_2PI * turn_radius_ft;
dist_covered_ft = speed * 1.686 * dt;
alpha = dist_covered_ft / turn_circum_ft * 360.0;*/
if (turn_radius_ft <= 0) turn_radius_ft = 0; // don't allow nonsense values
if (rudder > 45) rudder = 45;
if (rudder < -45) rudder = -45;
// adjust turn radius for speed. The equation is very approximate.
sp_turn_radius_ft = 10 * pow ((speed - 15),2) + turn_radius_ft;
// cout << " speed turn radius " << sp_turn_radius_ft ;
// adjust turn radius for rudder angle. The equation is even more approximate.
float a = 19;
float b = -0.2485;
float c = 0.543;
rd_turn_radius_ft = (a * exp(b * fabs(rudder)) + c) * sp_turn_radius_ft;
// cout <<" rudder turn radius " << rd_turn_radius_ft << endl;
// calculate the angle, alpha, subtended by the arc traversed in time dt
alpha = ((speed * 1.686 * dt)/rd_turn_radius_ft) * SG_RADIANS_TO_DEGREES;
// make sure that alpha is applied in the right direction
hdg += alpha * sign( rudder );
if ( hdg > 360.0 ) hdg -= 360.0;
if ( hdg < 0.0) hdg += 360.0;
//adjust roll for rudder angle and speed. Another bit of voodoo
raw_roll = -0.0166667 * speed * rudder;
}
else
{
// rudder angle is 0
raw_roll = 0;
// cout << " roll "<< roll << endl;
}
//low pass filter
roll = (raw_roll * roll_constant) + (roll * (1 - roll_constant));
/*cout << " rudder: " << rudder << " raw roll: "<< raw_roll<<" roll: " << roll ;
cout << " hdg: " << hdg << endl ;*/
// adjust target rudder angle if heading lock engaged
if (hdg_lock) {
double rudder_sense = 0.0;
double diff = fabs(hdg - tgt_heading);
if (diff > 180) diff = fabs(diff - 360);
double sum = hdg + diff;
if (sum > 360.0) sum -= 360.0;
if (fabs(sum - tgt_heading) < 1.0) {
rudder_sense = 1.0;
} else {
rudder_sense = -1.0;
}
if (diff < 15){
tgt_rudder = diff * rudder_sense;
}
else
{
tgt_rudder = 45 * rudder_sense;
}
}
// adjust rudder angle
double rudder_diff = tgt_rudder - rudder;
// set the rudder limit by speed
if (speed <= 40 ){
rudder_limit = (-0.825 * speed) + 35;
}else{
rudder_limit = 2;
}
if (fabs(rudder_diff) > 0.1) {
if (rudder_diff > 0.0){
rudder += rudder_constant * dt;
if (rudder > rudder_limit) rudder = rudder_limit;// apply the rudder limit
} else if (rudder_diff < 0.0){
rudder -= rudder_constant * dt;
if (rudder < -rudder_limit) rudder = -rudder_limit;
}
}
}//end function
void FGAIShip::AccelTo(double speed) {
tgt_speed = speed;
}
void FGAIShip::PitchTo(double angle) {
tgt_pitch = angle;
}
void FGAIShip::RollTo(double angle) {
tgt_roll = angle;
}
void FGAIShip::YawTo(double angle) {
}
void FGAIShip::ClimbTo(double altitude) {
}
void FGAIShip::TurnTo(double heading) {
tgt_heading = heading;
hdg_lock = true;
}
double FGAIShip::sign(double x) {
if ( x < 0.0 ) { return -1.0; }
else { return 1.0; }
}
void FGAIShip::setFlightPlan(FGAIFlightPlan* f) {
fp = f;
}
void FGAIShip::setName(const string& n) {
name = n;
}
void FGAIShip::ProcessFlightPlan(double dt) {
// not implemented yet
}
void FGAIShip::setRudder(float r) {
rudder = r;
}
void FGAIShip::setRoll(double rl) {
roll = rl;
}