1
0
Fork 0
flightgear/src/Time/sunsolver.cxx

184 lines
6.2 KiB
C++
Raw Normal View History

/*
* sunsolver.cxx - given a location on earth and a time of day/date,
* find the number of seconds to various sun positions.
*
* Written by Curtis Olson, started September 2003.
*
* Copyright (C) 2003 Curtis L. Olson - http://www.flightgear.org/~curt
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
2006-02-21 01:16:04 +00:00
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $Id$
*/
2005-11-12 14:40:17 +00:00
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef SG_HAVE_STD_INCLUDES
# include <cmath>
// # include <cstdio>
# include <ctime>
# ifdef macintosh
SG_USING_STD(time_t);
# endif
#else
# include <math.h>
// # include <stdio.h>
# include <time.h>
#endif
#include <simgear/math/point3d.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/ephemeris/ephemeris.hxx>
#include <simgear/timing/sg_time.hxx>
#include <Main/globals.hxx>
#include "tmp.hxx"
#include "sunsolver.hxx"
static const time_t day_secs = 86400;
static const time_t half_day_secs = day_secs / 2;
static const time_t step_secs = 60;
/* given a particular time expressed in side real time at prime
* meridian (GST), compute position on the earth (lat, lon) such that
* sun is directly overhead. (lat, lon are reported in radians */
void fgSunPositionGST(double gst, double *lon, double *lat) {
/* time_t ssue; seconds since unix epoch */
/* double *lat; (return) latitude */
/* double *lon; (return) longitude */
/* double lambda; */
double alpha, delta;
double tmp;
double beta = globals->get_ephem()->get_sun()->getLat();
double r = globals->get_ephem()->get_sun()->getDistance();
double xs = globals->get_ephem()->get_sun()->getxs();
double ys = globals->get_ephem()->get_sun()->getys();
double ye = globals->get_ephem()->get_sun()->getye();
double ze = globals->get_ephem()->get_sun()->getze();
alpha = atan2(ys - tan(beta)*ze/ys, xs);
delta = asin(sin(beta)*ye/ys + cos(beta)*ze);
// tmp = alpha - (SGD_2PI/24)*GST(ssue);
tmp = alpha - (SGD_2PI/24)*gst;
if (tmp < -SGD_PI) {
do tmp += SGD_2PI;
while (tmp < -SGD_PI);
} else if (tmp > SGD_PI) {
do tmp -= SGD_2PI;
while (tmp < -SGD_PI);
}
*lon = tmp;
*lat = delta;
}
static double sun_angle( const SGTime &t, sgVec3 world_up,
double lon_rad, double lat_rad ) {
sgVec3 nup, nsun;
Point3D p, rel_sunpos;
SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" );
SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t.getGst() );
double sun_lon, sun_gd_lat;
fgSunPositionGST( t.getGst(), &sun_lon, &sun_gd_lat );
Point3D sunpos = sgGeodToCart(Point3D(sun_lon, sun_gd_lat, 0));
SG_LOG( SG_EVENT, SG_DEBUG, " t.cur_time = " << t.get_cur_time() );
SG_LOG( SG_EVENT, SG_DEBUG,
" Sun Geodetic lat = " << sun_gd_lat );
// calculate the sun's relative angle to local up
sgCopyVec3( nup, world_up );
sgSetVec3( nsun, sunpos.x(), sunpos.y(), sunpos.z() );
sgNormalizeVec3(nup);
sgNormalizeVec3(nsun);
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","
// << nsun[2] << endl;
double sun_angle = acos( sgScalarProductVec3 ( nup, nsun ) );
double sun_angle_deg = sun_angle * SG_RADIANS_TO_DEGREES;
while ( sun_angle_deg < -180 ) { sun_angle += 360; }
SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = "
<< sun_angle_deg );
return sun_angle_deg;
}
/**
* Given the current unix time in seconds, calculate seconds to the
* specified sun angle (relative to straight up.) Also specify if we
* want the angle while the sun is ascending or descending. For
* instance noon is when the sun angle is 0 (or the closest it can
* get.) Dusk is when the sun angle is 90 and descending. Dawn is
* when the sun angle is 90 and ascending.
*/
time_t fgTimeSecondsUntilSunAngle( time_t cur_time,
double lon_rad,
double lat_rad,
double target_angle_deg,
bool ascending )
{
// cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", "
// << lat_rad * SG_RADIANS_TO_DEGREES << endl;
Point3D geod( lon_rad, lat_rad, 0 );
Point3D tmp = sgGeodToCart( geod );
sgVec3 world_up;
sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() );
SGTime t = SGTime( lon_rad, lat_rad, "", 0 );
double best_diff = 180.0;
double last_angle = -99999.0;
time_t best_time = cur_time;
for ( time_t secs = cur_time - half_day_secs;
secs < cur_time + half_day_secs;
secs += step_secs )
{
t.update( lon_rad, lat_rad, secs, 0 );
double angle_deg = sun_angle( t, world_up, lon_rad, lat_rad );
double diff = fabs( angle_deg - target_angle_deg );
if ( diff < best_diff ) {
if ( last_angle <= 180.0 && ascending
&& ( last_angle > angle_deg ) ) {
// cout << "best angle = " << angle << " offset = "
// << secs - cur_time << endl;
best_diff = diff;
best_time = secs;
} else if ( last_angle <= 180.0 && !ascending
&& ( last_angle < angle_deg ) ) {
// cout << "best angle = " << angle << " offset = "
// << secs - cur_time << endl;
best_diff = diff;
best_time = secs;
}
}
last_angle = angle_deg;
}
return best_time - cur_time;
}