1
0
Fork 0
flightgear/src/Time/sunsolver.cxx

237 lines
7.5 KiB
C++
Raw Normal View History

/*
* sunsolver.cxx - given a location on earth and a time of day/date,
* find the number of seconds to various sun positions.
*
* Written by Curtis Olson, started September 2003.
*
* Copyright (C) 2003 Curtis L. Olson - curt@flightgear.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id$
*/
#include <simgear/math/point3d.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/timing/sg_time.hxx>
#include <Main/globals.hxx>
#include "sunpos.hxx"
#include "sunsolver.hxx"
static const time_t day_secs = 86400;
static const time_t half_day_secs = day_secs / 2;
static const time_t step_secs = 60;
static double sun_angle( const SGTime &t, sgVec3 world_up,
double lon_rad, double lat_rad ) {
sgVec3 nup, nsun;
Point3D p, rel_sunpos;
SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" );
SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t.getGst() );
double sun_lon, sun_gd_lat, sun_gc_lat, sl_radius;
fgSunPositionGST( t.getGst(), &sun_lon, &sun_gd_lat );
sgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &sun_gc_lat);
p = Point3D( sun_lon, sun_gc_lat, sl_radius );
Point3D sunpos = sgPolarToCart3d(p);
SG_LOG( SG_EVENT, SG_DEBUG, " t.cur_time = " << t.get_cur_time() );
SG_LOG( SG_EVENT, SG_DEBUG,
" Sun Geodetic lat = " << sun_gd_lat
<< " Geocentric lat = " << sun_gc_lat );
// calculate the sun's relative angle to local up
sgCopyVec3( nup, world_up );
sgSetVec3( nsun, sunpos.x(), sunpos.y(), sunpos.z() );
sgNormalizeVec3(nup);
sgNormalizeVec3(nsun);
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","
// << nsun[2] << endl;
double sun_angle = acos( sgScalarProductVec3 ( nup, nsun ) );
double sun_angle_deg = sun_angle * SG_RADIANS_TO_DEGREES;
while ( sun_angle_deg < -180 ) { sun_angle += 360; }
SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = "
<< sun_angle_deg );
return sun_angle_deg;
}
/**
* Given the current unix time in seconds, calculate seconds to noon
*/
time_t fgTimeSecondsUntilNoon( time_t cur_time,
double lon_rad,
double lat_rad )
{
// cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", "
// << lat_rad * SG_RADIANS_TO_DEGREES << endl;
Point3D geod( lon_rad, lat_rad, 0 );
Point3D tmp = sgGeodToCart( geod );
sgVec3 world_up;
sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() );
SGTime t = SGTime( lon_rad, lat_rad, "", 0 );
double best_angle = 180.0;
time_t best_time = cur_time;
for ( time_t secs = cur_time - half_day_secs;
secs < cur_time + half_day_secs;
secs += step_secs )
{
t.update( lon_rad, lat_rad, secs, 0 );
double angle = sun_angle( t, world_up, lon_rad, lat_rad );
if ( angle < best_angle ) {
// cout << "best angle = " << angle << " offset = "
// << secs - cur_time << endl;
best_angle = angle;
best_time = secs;
}
}
return best_time - cur_time;
}
/**
* Given the current unix time in seconds, calculate seconds to midnight
*/
time_t fgTimeSecondsUntilMidnight( time_t cur_time,
double lon_rad,
double lat_rad )
{
// cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", "
// << lat_rad * SG_RADIANS_TO_DEGREES << endl;
Point3D geod( lon_rad, lat_rad, 0 );
Point3D tmp = sgGeodToCart( geod );
sgVec3 world_up;
sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() );
SGTime t = SGTime( lon_rad, lat_rad, "", 0 );
double best_angle = 0.0;
time_t best_time = cur_time;
for ( time_t secs = cur_time - half_day_secs;
secs < cur_time + half_day_secs;
secs += step_secs )
{
t.update( lon_rad, lat_rad, secs, 0 );
double angle = sun_angle( t, world_up, lon_rad, lat_rad );
if ( angle > best_angle ) {
// cout << "best angle = " << angle << " offset = "
// << secs - cur_time << endl;
best_angle = angle;
best_time = secs;
}
}
return best_time - cur_time;
}
/**
* Given the current unix time in seconds, calculate seconds to dusk
*/
time_t fgTimeSecondsUntilDusk( time_t cur_time,
double lon_rad,
double lat_rad )
{
// cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", "
// << lat_rad * SG_RADIANS_TO_DEGREES << endl;
Point3D geod( lon_rad, lat_rad, 0 );
Point3D tmp = sgGeodToCart( geod );
sgVec3 world_up;
sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() );
SGTime t = SGTime( lon_rad, lat_rad, "", 0 );
double best_diff = 90.0;
double last_angle = -99999.0;
time_t best_time = cur_time;
for ( time_t secs = cur_time - half_day_secs;
secs < cur_time + half_day_secs;
secs += step_secs )
{
t.update( lon_rad, lat_rad, secs, 0 );
double angle = sun_angle( t, world_up, lon_rad, lat_rad );
double diff = fabs( angle - 90.0 );
if ( diff < best_diff ) {
if ( last_angle <= 180.0 && ( last_angle < angle ) ) {
// cout << "best angle = " << angle << " offset = "
// << secs - cur_time << endl;
best_diff = diff;
best_time = secs;
}
}
last_angle = angle;
}
return best_time - cur_time;
}
/**
* Given the current unix time in seconds, calculate seconds to dawn
*/
time_t fgTimeSecondsUntilDawn( time_t cur_time,
double lon_rad,
double lat_rad )
{
// cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", "
// << lat_rad * SG_RADIANS_TO_DEGREES << endl;
Point3D geod( lon_rad, lat_rad, 0 );
Point3D tmp = sgGeodToCart( geod );
sgVec3 world_up;
sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() );
SGTime t = SGTime( lon_rad, lat_rad, "", 0 );
double best_diff = 90.0;
double last_angle = -99999.0;
time_t best_time = cur_time;
for ( time_t secs = cur_time - half_day_secs;
secs < cur_time + half_day_secs;
secs += step_secs )
{
t.update( lon_rad, lat_rad, secs, 0 );
double angle = sun_angle( t, world_up, lon_rad, lat_rad );
double diff = fabs( angle - 90.0 );
if ( diff < best_diff ) {
if ( last_angle <= 180.0 && ( last_angle > angle ) ) {
// cout << "best angle = " << angle << " offset = "
// << secs - cur_time << endl;
best_diff = diff;
best_time = secs;
}
}
last_angle = angle;
}
return best_time - cur_time;
}