/* * sunsolver.cxx - given a location on earth and a time of day/date, * find the number of seconds to various sun positions. * * Written by Curtis Olson, started September 2003. * * Copyright (C) 2003 Curtis L. Olson - curt@flightgear.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id$ */ #include #include #include #include
#include "sunpos.hxx" #include "sunsolver.hxx" static const time_t day_secs = 86400; static const time_t half_day_secs = day_secs / 2; static const time_t step_secs = 60; static double sun_angle( const SGTime &t, sgVec3 world_up, double lon_rad, double lat_rad ) { sgVec3 nup, nsun; Point3D p, rel_sunpos; SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" ); SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t.getGst() ); double sun_lon, sun_gd_lat, sun_gc_lat, sl_radius; fgSunPositionGST( t.getGst(), &sun_lon, &sun_gd_lat ); sgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &sun_gc_lat); p = Point3D( sun_lon, sun_gc_lat, sl_radius ); Point3D sunpos = sgPolarToCart3d(p); SG_LOG( SG_EVENT, SG_DEBUG, " t.cur_time = " << t.get_cur_time() ); SG_LOG( SG_EVENT, SG_DEBUG, " Sun Geodetic lat = " << sun_gd_lat << " Geocentric lat = " << sun_gc_lat ); // calculate the sun's relative angle to local up sgCopyVec3( nup, world_up ); sgSetVec3( nsun, sunpos.x(), sunpos.y(), sunpos.z() ); sgNormalizeVec3(nup); sgNormalizeVec3(nsun); // cout << "nup = " << nup[0] << "," << nup[1] << "," // << nup[2] << endl; // cout << "nsun = " << nsun[0] << "," << nsun[1] << "," // << nsun[2] << endl; double sun_angle = acos( sgScalarProductVec3 ( nup, nsun ) ); double sun_angle_deg = sun_angle * SG_RADIANS_TO_DEGREES; while ( sun_angle_deg < -180 ) { sun_angle += 360; } SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = " << sun_angle_deg ); return sun_angle_deg; } /** * Given the current unix time in seconds, calculate seconds to noon */ time_t fgTimeSecondsUntilNoon( time_t cur_time, double lon_rad, double lat_rad ) { // cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", " // << lat_rad * SG_RADIANS_TO_DEGREES << endl; Point3D geod( lon_rad, lat_rad, 0 ); Point3D tmp = sgGeodToCart( geod ); sgVec3 world_up; sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() ); SGTime t = SGTime( lon_rad, lat_rad, "", 0 ); double best_angle = 180.0; time_t best_time = cur_time; for ( time_t secs = cur_time - half_day_secs; secs < cur_time + half_day_secs; secs += step_secs ) { t.update( lon_rad, lat_rad, secs, 0 ); double angle = sun_angle( t, world_up, lon_rad, lat_rad ); if ( angle < best_angle ) { // cout << "best angle = " << angle << " offset = " // << secs - cur_time << endl; best_angle = angle; best_time = secs; } } return best_time - cur_time; } /** * Given the current unix time in seconds, calculate seconds to midnight */ time_t fgTimeSecondsUntilMidnight( time_t cur_time, double lon_rad, double lat_rad ) { // cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", " // << lat_rad * SG_RADIANS_TO_DEGREES << endl; Point3D geod( lon_rad, lat_rad, 0 ); Point3D tmp = sgGeodToCart( geod ); sgVec3 world_up; sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() ); SGTime t = SGTime( lon_rad, lat_rad, "", 0 ); double best_angle = 0.0; time_t best_time = cur_time; for ( time_t secs = cur_time - half_day_secs; secs < cur_time + half_day_secs; secs += step_secs ) { t.update( lon_rad, lat_rad, secs, 0 ); double angle = sun_angle( t, world_up, lon_rad, lat_rad ); if ( angle > best_angle ) { // cout << "best angle = " << angle << " offset = " // << secs - cur_time << endl; best_angle = angle; best_time = secs; } } return best_time - cur_time; } /** * Given the current unix time in seconds, calculate seconds to dusk */ time_t fgTimeSecondsUntilDusk( time_t cur_time, double lon_rad, double lat_rad ) { // cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", " // << lat_rad * SG_RADIANS_TO_DEGREES << endl; Point3D geod( lon_rad, lat_rad, 0 ); Point3D tmp = sgGeodToCart( geod ); sgVec3 world_up; sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() ); SGTime t = SGTime( lon_rad, lat_rad, "", 0 ); double best_diff = 90.0; double last_angle = -99999.0; time_t best_time = cur_time; for ( time_t secs = cur_time - half_day_secs; secs < cur_time + half_day_secs; secs += step_secs ) { t.update( lon_rad, lat_rad, secs, 0 ); double angle = sun_angle( t, world_up, lon_rad, lat_rad ); double diff = fabs( angle - 90.0 ); if ( diff < best_diff ) { if ( last_angle <= 180.0 && ( last_angle < angle ) ) { // cout << "best angle = " << angle << " offset = " // << secs - cur_time << endl; best_diff = diff; best_time = secs; } } last_angle = angle; } return best_time - cur_time; } /** * Given the current unix time in seconds, calculate seconds to dawn */ time_t fgTimeSecondsUntilDawn( time_t cur_time, double lon_rad, double lat_rad ) { // cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", " // << lat_rad * SG_RADIANS_TO_DEGREES << endl; Point3D geod( lon_rad, lat_rad, 0 ); Point3D tmp = sgGeodToCart( geod ); sgVec3 world_up; sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() ); SGTime t = SGTime( lon_rad, lat_rad, "", 0 ); double best_diff = 90.0; double last_angle = -99999.0; time_t best_time = cur_time; for ( time_t secs = cur_time - half_day_secs; secs < cur_time + half_day_secs; secs += step_secs ) { t.update( lon_rad, lat_rad, secs, 0 ); double angle = sun_angle( t, world_up, lon_rad, lat_rad ); double diff = fabs( angle - 90.0 ); if ( diff < best_diff ) { if ( last_angle <= 180.0 && ( last_angle > angle ) ) { // cout << "best angle = " << angle << " offset = " // << secs - cur_time << endl; best_diff = diff; best_time = secs; } } last_angle = angle; } return best_time - cur_time; }