1
0
Fork 0
fgdata/Shaders/urban.frag

141 lines
4 KiB
C

// -*- mode: C; -*-
// Licence: GPL v2
// Author: Frederic Bouvier.
// Adapted from the paper by F. Policarpo et al. : Real-time Relief Mapping on Arbitrary Polygonal Surfaces
#version 120
varying vec4 rawpos;
varying vec4 ecPosition;
varying vec3 VNormal;
varying vec3 VTangent;
varying vec3 VBinormal;
varying vec3 Normal;
varying vec4 constantColor;
uniform sampler3D NoiseTex;
uniform sampler2D BaseTex;
uniform sampler2D NormalTex;
uniform float depth_factor;
uniform float tile_size;
uniform float quality_level; // From /sim/rendering/quality-level
uniform float snowlevel; // From /sim/rendering/snow-level-m
uniform vec3 night_color;
const float scale = 1.0;
int linear_search_steps = 10;
float ray_intersect(sampler2D reliefMap, vec2 dp, vec2 ds)
{
float size = 1.0 / float(linear_search_steps);
float depth = 0.0;
float best_depth = 1.0;
for(int i = 0; i < linear_search_steps - 1; ++i)
{
depth += size;
float t = step(0.95, texture2D(reliefMap, dp + ds * depth).a);
if(best_depth > 0.996)
if(depth >= t)
best_depth = depth;
}
depth = best_depth;
const int binary_search_steps = 5;
for(int i = 0; i < binary_search_steps; ++i)
{
size *= 0.5;
float t = step(0.95, texture2D(reliefMap, dp + ds * depth).a);
if(depth >= t)
{
best_depth = depth;
depth -= 2.0 * size;
}
depth += size;
}
return(best_depth);
}
void main (void)
{
if ( quality_level >= 3.5 ) {
linear_search_steps = 20;
}
vec3 ecPos3 = ecPosition.xyz / ecPosition.w;
vec3 V = normalize(ecPos3);
vec3 s = vec3(dot(V, VTangent), dot(V, VBinormal), dot(VNormal, -V));
vec2 ds = s.xy * depth_factor / s.z;
vec2 dp = gl_TexCoord[0].st - ds;
float d = ray_intersect(NormalTex, dp, ds);
vec2 uv = dp + ds * d;
vec3 N = texture2D(NormalTex, uv).xyz * 2.0 - 1.0;
float emis = N.z;
N.z = sqrt(1.0 - min(1.0,dot(N.xy, N.xy)));
float Nz = N.z;
N = normalize(N.x * VTangent + N.y * VBinormal + N.z * VNormal);
vec3 l = gl_LightSource[0].position.xyz;
vec3 diffuse = gl_Color.rgb * max(0.0, dot(N, l));
float shadow_factor = 1.0;
// Shadow
if ( quality_level >= 3.0 ) {
dp += ds * d;
vec3 sl = normalize( vec3( dot( l, VTangent ), dot( l, VBinormal ), dot( -l, VNormal ) ) );
ds = sl.xy * depth_factor / sl.z;
dp -= ds * d;
float dl = ray_intersect(NormalTex, dp, ds);
if ( dl < d - 0.05 )
shadow_factor = dot( constantColor.xyz, vec3( 1.0, 1.0, 1.0 ) ) * 0.25;
}
// end shadow
vec4 ambient_light = constantColor + gl_LightSource[0].diffuse * vec4(diffuse, 1.0);
float reflectance = ambient_light.r * 0.3 + ambient_light.g * 0.59 + ambient_light.b * 0.11;
if ( shadow_factor < 1.0 )
ambient_light = constantColor + gl_LightSource[0].diffuse * shadow_factor * vec4(diffuse, 1.0);
float emission_factor = (1.0 - smoothstep(0.15, 0.25, reflectance)) * emis;
vec4 tc = texture2D(BaseTex, uv);
emission_factor *= 0.5*pow(tc.r+0.8*tc.g+0.2*tc.b, 2.0) -0.2;
ambient_light += (emission_factor * vec4(night_color, 0.0));
float fogFactor;
float fogCoord = ecPos3.z / (1.0 + smoothstep(0.3, 0.7, emission_factor));
const float LOG2 = 1.442695;
fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2);
fogFactor = clamp(fogFactor, 0.0, 1.0);
vec4 noisevec = texture3D(NoiseTex, (rawpos.xyz)*0.01*scale);
vec4 nvL = texture3D(NoiseTex, (rawpos.xyz)*0.00066*scale);
float n=0.06;
n += nvL[0]*0.4;
n += nvL[1]*0.6;
n += nvL[2]*2.0;
n += nvL[3]*4.0;
n += noisevec[0]*0.1;
n += noisevec[1]*0.4;
n += noisevec[2]*0.8;
n += noisevec[3]*2.1;
n = mix(0.6, n, fogFactor);
vec4 finalColor = texture2D(BaseTex, uv);
finalColor = mix(finalColor, clamp(n+nvL[2]*4.1+vec4(0.1, 0.1, nvL[2]*2.2, 1.0), 0.7, 1.0),
step(0.8,Nz)*(1.0-emis)*smoothstep(snowlevel+300.0, snowlevel+360.0, (rawpos.z)+nvL[1]*3000.0));
finalColor *= ambient_light;
if (gl_Fog.density == 1.0)
fogFactor=1.0;
vec4 p = vec4( ecPos3 + tile_size * V * (d-1.0) * depth_factor / s.z, 1.0 );
vec4 iproj = gl_ProjectionMatrix * p;
iproj /= iproj.w;
gl_FragColor = mix(gl_Fog.color ,finalColor, fogFactor);
gl_FragDepth = (iproj.z+1.0)/2.0;
}