// -*- mode: C; -*- // Licence: GPL v2 // Author: Frederic Bouvier. // Adapted from the paper by F. Policarpo et al. : Real-time Relief Mapping on Arbitrary Polygonal Surfaces #version 120 varying vec4 rawpos; varying vec4 ecPosition; varying vec3 VNormal; varying vec3 VTangent; varying vec3 VBinormal; varying vec3 Normal; varying vec4 constantColor; uniform sampler3D NoiseTex; uniform sampler2D BaseTex; uniform sampler2D NormalTex; uniform float depth_factor; uniform float tile_size; uniform float quality_level; // From /sim/rendering/quality-level uniform float snowlevel; // From /sim/rendering/snow-level-m uniform vec3 night_color; const float scale = 1.0; int linear_search_steps = 10; float ray_intersect(sampler2D reliefMap, vec2 dp, vec2 ds) { float size = 1.0 / float(linear_search_steps); float depth = 0.0; float best_depth = 1.0; for(int i = 0; i < linear_search_steps - 1; ++i) { depth += size; float t = step(0.95, texture2D(reliefMap, dp + ds * depth).a); if(best_depth > 0.996) if(depth >= t) best_depth = depth; } depth = best_depth; const int binary_search_steps = 5; for(int i = 0; i < binary_search_steps; ++i) { size *= 0.5; float t = step(0.95, texture2D(reliefMap, dp + ds * depth).a); if(depth >= t) { best_depth = depth; depth -= 2.0 * size; } depth += size; } return(best_depth); } void main (void) { if ( quality_level >= 3.5 ) { linear_search_steps = 20; } vec3 ecPos3 = ecPosition.xyz / ecPosition.w; vec3 V = normalize(ecPos3); vec3 s = vec3(dot(V, VTangent), dot(V, VBinormal), dot(VNormal, -V)); vec2 ds = s.xy * depth_factor / s.z; vec2 dp = gl_TexCoord[0].st - ds; float d = ray_intersect(NormalTex, dp, ds); vec2 uv = dp + ds * d; vec3 N = texture2D(NormalTex, uv).xyz * 2.0 - 1.0; float emis = N.z; N.z = sqrt(1.0 - min(1.0,dot(N.xy, N.xy))); float Nz = N.z; N = normalize(N.x * VTangent + N.y * VBinormal + N.z * VNormal); vec3 l = gl_LightSource[0].position.xyz; vec3 diffuse = gl_Color.rgb * max(0.0, dot(N, l)); float shadow_factor = 1.0; // Shadow if ( quality_level >= 3.0 ) { dp += ds * d; vec3 sl = normalize( vec3( dot( l, VTangent ), dot( l, VBinormal ), dot( -l, VNormal ) ) ); ds = sl.xy * depth_factor / sl.z; dp -= ds * d; float dl = ray_intersect(NormalTex, dp, ds); if ( dl < d - 0.05 ) shadow_factor = dot( constantColor.xyz, vec3( 1.0, 1.0, 1.0 ) ) * 0.25; } // end shadow vec4 ambient_light = constantColor + gl_LightSource[0].diffuse * vec4(diffuse, 1.0); float reflectance = ambient_light.r * 0.3 + ambient_light.g * 0.59 + ambient_light.b * 0.11; if ( shadow_factor < 1.0 ) ambient_light = constantColor + gl_LightSource[0].diffuse * shadow_factor * vec4(diffuse, 1.0); float emission_factor = (1.0 - smoothstep(0.15, 0.25, reflectance)) * emis; vec4 tc = texture2D(BaseTex, uv); emission_factor *= 0.5*pow(tc.r+0.8*tc.g+0.2*tc.b, 2.0) -0.2; ambient_light += (emission_factor * vec4(night_color, 0.0)); float fogFactor; float fogCoord = ecPos3.z / (1.0 + smoothstep(0.3, 0.7, emission_factor)); const float LOG2 = 1.442695; fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2); fogFactor = clamp(fogFactor, 0.0, 1.0); vec4 noisevec = texture3D(NoiseTex, (rawpos.xyz)*0.01*scale); vec4 nvL = texture3D(NoiseTex, (rawpos.xyz)*0.00066*scale); float n=0.06; n += nvL[0]*0.4; n += nvL[1]*0.6; n += nvL[2]*2.0; n += nvL[3]*4.0; n += noisevec[0]*0.1; n += noisevec[1]*0.4; n += noisevec[2]*0.8; n += noisevec[3]*2.1; n = mix(0.6, n, fogFactor); vec4 finalColor = texture2D(BaseTex, uv); finalColor = mix(finalColor, clamp(n+nvL[2]*4.1+vec4(0.1, 0.1, nvL[2]*2.2, 1.0), 0.7, 1.0), step(0.8,Nz)*(1.0-emis)*smoothstep(snowlevel+300.0, snowlevel+360.0, (rawpos.z)+nvL[1]*3000.0)); finalColor *= ambient_light; if (gl_Fog.density == 1.0) fogFactor=1.0; vec4 p = vec4( ecPos3 + tile_size * V * (d-1.0) * depth_factor / s.z, 1.0 ); vec4 iproj = gl_ProjectionMatrix * p; iproj /= iproj.w; gl_FragColor = mix(gl_Fog.color ,finalColor, fogFactor); gl_FragDepth = (iproj.z+1.0)/2.0; }