1
0
Fork 0
fgdata/Shaders/tree-ALS-shadow.frag

391 lines
10 KiB
GLSL
Raw Permalink Normal View History

2015-02-20 09:55:13 +02:00
// -*-C++-*-
#version 120
2015-02-20 09:55:13 +02:00
// written by Thorsten Renk, Oct 2011, based on default.frag
varying vec3 relPos;
uniform sampler2D texture;
varying float yprime_alt;
varying float is_shadow;
varying float autumn_flag;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float ground_scattering;
uniform float cloud_self_shading;
uniform float terminator;
uniform float terrain_alt;
uniform float hazeLayerAltitude;
uniform float overcast;
uniform float eye_alt;
uniform float dust_cover_factor;
uniform float air_pollution;
uniform float landing_light1_offset;
uniform float landing_light2_offset;
uniform float landing_light3_offset;
2015-02-20 09:55:13 +02:00
uniform float cseason;
uniform int use_searchlight;
uniform int use_landing_light;
uniform int use_alt_landing_light;
uniform int quality_level;
uniform int tquality_level;
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float alt;
float mie_angle;
float light_distance_fading(in float dist);
float fog_backscatter(in float avisibility);
float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt);
vec3 searchlight();
vec3 landing_light(in float offset, in float offsetv);
2015-02-20 09:55:13 +02:00
vec3 get_hazeColor(in float light_arg);
vec3 filter_combined (in vec3 color) ;
2015-02-20 09:55:13 +02:00
float luminance(vec3 color)
{
return dot(vec3(0.212671, 0.715160, 0.072169), color);
}
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
x = x - 0.5;
// use the asymptotics to shorten computations
if (x > 30.0) {return e;}
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
// this determines how light is attenuated in the distance
// physically this should be exp(-arg) but for technical reasons we use a sharper cutoff
// for distance > visibility
float tree_fog_func (in float targ)
{
float fade_mix;
// for large altitude > 30 km, we switch to some component of quadratic distance fading to
// create the illusion of improved visibility range
targ = 1.25 * targ * smoothstep(0.07,0.1,targ); // need to sync with the distance to which terrain is drawn
if (alt < 30000.0)
{return exp(-targ - targ * targ * targ * targ);}
else if (alt < 50000.0)
{
fade_mix = (alt - 30000.0)/20000.0;
return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0));
}
else
{
return exp(- targ * targ - pow(targ,4.0));
}
}
float rand2D(in vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
float simple_interpolate(in float a, in float b, in float x)
{
return a + smoothstep(0.0,1.0,x) * (b-a);
}
float interpolatedNoise2D(in float x, in float y)
{
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float v1 = rand2D(vec2(integer_x, integer_y));
float v2 = rand2D(vec2(integer_x+1.0, integer_y));
float v3 = rand2D(vec2(integer_x, integer_y+1.0));
float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0));
float i1 = simple_interpolate(v1 , v2 , fractional_x);
float i2 = simple_interpolate(v3 , v4 , fractional_x);
return simple_interpolate(i1 , i2 , fractional_y);
}
float Noise2D(in vec2 coord, in float wavelength)
{
return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength);
}
void main()
{
if (is_shadow > 1.0) {discard;}
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
2015-02-20 09:55:13 +02:00
vec3 lightDir = gl_LightSource[0].position.xyz;
float intensity;
mie_angle = gl_Color.a;
vec4 texel = texture2D(texture, gl_TexCoord[0].st);
// angle with horizon
float dist = length(relPos);
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
// determine tree shadow properties
if (is_shadow>0.0)
{
if (ct > -0.1) {discard;} // we eliminate shadows above the camera to avoid artifacts
float illumination = length(gl_Color.rgb);
texel = vec4 (0.1,0.1,0.1,texel.a);
texel.a *= illumination;// * smoothstep(0.0, 0.2, is_shadow);
texel.a *=0.6 * smoothstep(0.5,0.8,scattering);
texel.a = min(0.8, texel.a);
}
float effective_scattering = min(scattering, cloud_self_shading);
if (quality_level > 3)
{
// seasonal color changes
if ((cseason < 1.5)&& (autumn_flag > 0.0) && (is_shadow <0.0))
{
texel.r = min(1.0, (1.0 + 5.0 *cseason * autumn_flag ) * texel.r);
texel.b = max(0.0, (1.0 - 8.0 * cseason) * texel.b);
}
// mix dust
vec4 dust_color = vec4 (0.76, 0.71, 0.56, texel.a);
texel = mix(texel, dust_color, clamp(0.6 * dust_cover_factor ,0.0, 1.0) );
}
// ALS secondary light sources
vec3 secondary_light = vec3 (0.0,0.0,0.0);
if ((quality_level>5) && (tquality_level>5))
{
if (use_searchlight == 1)
{
secondary_light += searchlight();
}
if (use_landing_light == 1)
{
secondary_light += landing_light(landing_light1_offset, landing_light3_offset);
2015-02-20 09:55:13 +02:00
}
if (use_alt_landing_light == 1)
{
secondary_light += landing_light(landing_light2_offset, landing_light3_offset);
2015-02-20 09:55:13 +02:00
}
}
vec4 fragColor = vec4 (gl_Color.rgb +secondary_light * light_distance_fading(dist),1.0) * texel;
// Rayleigh haze
float lightArg = (terminator-yprime_alt)/100000.0;
vec3 hazeColor = get_hazeColor(lightArg);
// Rayleigh color shift due to in-scattering
if ((quality_level > 5) && (tquality_level > 5))
{
float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0);
float lightIntensity = length(hazeColor * effective_scattering) * rShade;
vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity;
float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z);
fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength);
}
// here comes the terrain haze model
float delta_z = hazeLayerAltitude - eye_alt;
if (dist > max(40.0, 0.07 * min(visibility,avisibility)))
{
alt = eye_alt;
float transmission;
float vAltitude;
float delta_zv;
float H;
float distance_in_layer;
float transmission_arg;
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
if (delta_z > 0.0) // we're inside the layer
{
if (ct < 0.0) // we look down
{
distance_in_layer = dist;
vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct;
delta_zv = delta_z - vAltitude;
}
else // we may look through upper layer edge
{
H = dist * ct;
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
else {distance_in_layer = dist;}
vAltitude = min(distance_in_layer,visibility) * ct;
delta_zv = delta_z - vAltitude;
}
}
else // we see the layer from above, delta_z < 0.0
{
H = dist * -ct;
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
{
distance_in_layer = 0.0;
delta_zv = 0.0;
}
else
{
vAltitude = H + delta_z;
distance_in_layer = vAltitude/H * dist;
vAltitude = min(distance_in_layer,visibility) * (-ct);
delta_zv = vAltitude;
}
}
// blur of the haze layer edge
float blur_thickness = 50.0;
float cphi = dot(vec3(0.0, 1.0, 0.0), relPos)/dist;
float ctlayer;
float ctblur = 0.035 ;
float blur_dist;
if ((abs(delta_z) < 400.0)&&(quality_level>5)&&(tquality_level>5))
{
ctlayer = delta_z/dist-0.01 + 0.02 * Noise2D(vec2(cphi,1.0),0.1) -0.01;
blur_dist = dist * (1.0-smoothstep(0.0,300.0,-delta_z)) * smoothstep(-400.0,-200.0, -delta_z);
blur_dist = blur_dist * smoothstep(ctlayer-4.0*ctblur, ctlayer-ctblur, ct) * (1.0-smoothstep(ctlayer+0.5*ctblur, ctlayer+ctblur, ct));
distance_in_layer = max(distance_in_layer, blur_dist);
}
// ground haze cannot be thinner than aloft visibility in the model,
// so we need to use aloft visibility otherwise
transmission_arg = (dist-distance_in_layer)/avisibility;
float eqColorFactor;
//float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, relPos.z + eye_alt);
if (visibility < avisibility)
{
transmission_arg = transmission_arg + (distance_in_layer/visibility);
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
}
transmission = tree_fog_func(transmission_arg);
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
// now dim the light for haze
float eShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1;
// Mie-like factor
if (lightArg < 10.0)
{intensity = length(hazeColor);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
}
// high altitude desaturation of the haze color
intensity = length(hazeColor);
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue of haze
hazeColor.x = hazeColor.x * 0.83;
hazeColor.y = hazeColor.y * 0.9;
// additional blue in indirect light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hazeColor);
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
// change haze color to blue hue for strong fogging
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
// determine the right mix of transmission and haze
//hazeColor = clamp(hazeColor,0.0,1.0);
2015-02-20 09:55:13 +02:00
fragColor.rgb = mix(eqColorFactor * hazeColor * eShade + secondary_light * fog_backscatter(avisibility), fragColor.rgb,transmission);
}
fragColor.rgb = filter_combined(fragColor.rgb);
2015-02-20 09:55:13 +02:00
gl_FragColor = fragColor;
}