1
0
Fork 0

Random vegetation shadows for ALS

This commit is contained in:
Thorsten Renk 2015-02-20 09:55:13 +02:00
parent 27740a17f7
commit 3b44cbd6bd
7 changed files with 1253 additions and 4 deletions

9
Effects/tree-grass.eff Normal file
View file

@ -0,0 +1,9 @@
<?xml version="1.0" encoding="utf-8"?>
<PropertyList>
<name>Effects/tree-grass</name>
<inherits-from>Effects/tree</inherits-from>
<parameters>
<use_tree_shadows>false</use_tree_shadows>
<use_forest_effect>false</use_forest_effect>
</parameters>
</PropertyList>

View file

@ -18,6 +18,10 @@
</texture>
<!-- fog include -->
<num_deciduous_trees>0</num_deciduous_trees>
<forest_effect_size>200.0</forest_effect_size>
<forest_effect_shape>1.5</forest_effect_shape>
<use_forest_effect>true</use_forest_effect>
<use_tree_shadows>true</use_tree_shadows>
<visibility><use>/environment/ground-visibility-m</use></visibility>
<avisibility><use>/environment/visibility-m</use></avisibility>
<lthickness><use>/environment/ground-haze-thickness-m</use></lthickness>
@ -96,6 +100,453 @@
<!-- END fog include -->
</parameters>
<technique n="3">
<predicate>
<and>
<property>/sim/rendering/shaders/skydome</property>
<property>/sim/rendering/random-vegetation</property>
<property>/sim/rendering/multi-sample-buffers</property>
<property>/sim/rendering/random-vegetation-shadows</property>
<less-equal>
<value type="float">1.0</value>
<float-property>/sim/rendering/multi-samples</float-property>
</less-equal>
<extension-supported>GL_ARB_shader_objects</extension-supported>
<extension-supported>GL_ARB_shading_language_100</extension-supported>
<extension-supported>GL_ARB_vertex_shader</extension-supported>
<extension-supported>GL_ARB_fragment_shader</extension-supported>
<extension-supported>GL_ARB_multisample</extension-supported>
<less-equal>
<value type="float">2.0</value>
<glversion/>
</less-equal>
</and>
</predicate>
<pass>
<lighting>true</lighting>
<material>
<ambient type="vec4d">1.0 1.0 1.0 1.0</ambient>
<diffuse type="vec4d">1.0 1.0 1.0 1.0</diffuse>
<color-mode>off</color-mode>
</material>
<texture-unit>
<unit>0</unit>
<type>2d</type>
<image>
<use>texture[0]/image</use>
</image>
<wrap-s>clamp</wrap-s>
<wrap-t>clamp</wrap-t>
</texture-unit>
<alpha-to-coverage>true</alpha-to-coverage>
<program>
<vertex-shader>Shaders/tree-ALS-shadow.vert</vertex-shader>
<vertex-shader>Shaders/noise.frag</vertex-shader>
<vertex-shader>Shaders/cloud-shadowfunc.frag</vertex-shader>
<fragment-shader>Shaders/tree-ALS-shadow.frag</fragment-shader>
<fragment-shader>Shaders/secondary_lights.frag</fragment-shader>
<fragment-shader>Shaders/hazes.frag</fragment-shader>
</program>
<uniform>
<name>visibility</name>
<type>float</type>
<value><use>visibility</use></value>
</uniform>
<uniform>
<name>avisibility</name>
<type>float</type>
<value><use>avisibility</use></value>
</uniform>
<uniform>
<name>hazeLayerAltitude</name>
<type>float</type>
<value><use>lthickness</use></value>
</uniform>
<uniform>
<name>scattering</name>
<type>float</type>
<value><use>scattering</use></value>
</uniform>
<uniform>
<name>ground_scattering</name>
<type>float</type>
<value><use>ground_scattering</use></value>
</uniform>
<uniform>
<name>cloud_self_shading</name>
<type>float</type>
<value><use>cloud_self_shading</use></value>
</uniform>
<uniform>
<name>terminator</name>
<type>float</type>
<value><use>terminator</use></value>
</uniform>
<uniform>
<name>terrain_alt</name>
<type>float</type>
<value><use>terrain_alt</use></value>
</uniform>
<uniform>
<name>overcast</name>
<type>float</type>
<value><use>overcast</use></value>
</uniform>
<uniform>
<name>eye_alt</name>
<type>float</type>
<value><use>eye_alt</use></value>
</uniform>
<uniform>
<name>dust_cover_factor</name>
<type>float</type>
<value><use>dust_cover_factor</use></value>
</uniform>
<uniform>
<name>snow_level</name>
<type>float</type>
<value><use>snow_level</use></value>
</uniform>
<uniform>
<name>season</name>
<type>float</type>
<value><use>season</use></value>
</uniform>
<uniform>
<name>cseason</name>
<type>float</type>
<value><use>cseason</use></value>
</uniform>
<uniform>
<name>WindE</name>
<type>float</type>
<value><use>windE</use></value>
</uniform>
<uniform>
<name>WindN</name>
<type>float</type>
<value><use>windN</use></value>
</uniform>
<uniform>
<name>air_pollution</name>
<type>float</type>
<value><use>air_pollution</use></value>
</uniform>
<uniform>
<name>view_pitch_offset</name>
<type>float</type>
<value><use>view_pitch_offset</use></value>
</uniform>
<uniform>
<name>view_heading_offset</name>
<type>float</type>
<value><use>view_heading_offset</use></value>
</uniform>
<uniform>
<name>field_of_view</name>
<type>float</type>
<value><use>view_fov</use></value>
</uniform>
<uniform>
<name>landing_light1_offset</name>
<type>float</type>
<value><use>landing_light1_offset</use></value>
</uniform>
<uniform>
<name>landing_light2_offset</name>
<type>float</type>
<value><use>landing_light2_offset</use></value>
</uniform>
<uniform>
<name>cloudpos1_x</name>
<type>float</type>
<value><use>cloudpos1_x</use></value>
</uniform>
<uniform>
<name>cloudpos1_y</name>
<type>float</type>
<value><use>cloudpos1_y</use></value>
</uniform>
<uniform>
<name>cloudpos2_x</name>
<type>float</type>
<value><use>cloudpos2_x</use></value>
</uniform>
<uniform>
<name>cloudpos2_y</name>
<type>float</type>
<value><use>cloudpos2_y</use></value>
</uniform>
<uniform>
<name>cloudpos3_x</name>
<type>float</type>
<value><use>cloudpos3_x</use></value>
</uniform>
<uniform>
<name>cloudpos3_y</name>
<type>float</type>
<value><use>cloudpos3_y</use></value>
</uniform>
<uniform>
<name>cloudpos4_x</name>
<type>float</type>
<value><use>cloudpos4_x</use></value>
</uniform>
<uniform>
<name>cloudpos4_y</name>
<type>float</type>
<value><use>cloudpos4_y</use></value>
</uniform>
<uniform>
<name>cloudpos5_x</name>
<type>float</type>
<value><use>cloudpos5_x</use></value>
</uniform>
<uniform>
<name>cloudpos5_y</name>
<type>float</type>
<value><use>cloudpos5_y</use></value>
</uniform>
<uniform>
<name>cloudpos6_x</name>
<type>float</type>
<value><use>cloudpos6_x</use></value>
</uniform>
<uniform>
<name>cloudpos6_y</name>
<type>float</type>
<value><use>cloudpos6_y</use></value>
</uniform>
<uniform>
<name>cloudpos7_x</name>
<type>float</type>
<value><use>cloudpos7_x</use></value>
</uniform>
<uniform>
<name>cloudpos7_y</name>
<type>float</type>
<value><use>cloudpos7_y</use></value>
</uniform>
<uniform>
<name>cloudpos8_x</name>
<type>float</type>
<value><use>cloudpos8_x</use></value>
</uniform>
<uniform>
<name>cloudpos8_y</name>
<type>float</type>
<value><use>cloudpos8_y</use></value>
</uniform>
<uniform>
<name>cloudpos9_x</name>
<type>float</type>
<value><use>cloudpos9_x</use></value>
</uniform>
<uniform>
<name>cloudpos9_y</name>
<type>float</type>
<value><use>cloudpos9_y</use></value>
</uniform>
<uniform>
<name>cloudpos10_x</name>
<type>float</type>
<value><use>cloudpos10_x</use></value>
</uniform>
<uniform>
<name>cloudpos10_y</name>
<type>float</type>
<value><use>cloudpos10_y</use></value>
</uniform>
<uniform>
<name>cloudpos11_x</name>
<type>float</type>
<value><use>cloudpos11_x</use></value>
</uniform>
<uniform>
<name>cloudpos11_y</name>
<type>float</type>
<value><use>cloudpos11_y</use></value>
</uniform>
<uniform>
<name>cloudpos12_x</name>
<type>float</type>
<value><use>cloudpos12_x</use></value>
</uniform>
<uniform>
<name>cloudpos12_y</name>
<type>float</type>
<value><use>cloudpos12_y</use></value>
</uniform>
<uniform>
<name>cloudpos13_x</name>
<type>float</type>
<value><use>cloudpos13_x</use></value>
</uniform>
<uniform>
<name>cloudpos13_y</name>
<type>float</type>
<value><use>cloudpos13_y</use></value>
</uniform>
<uniform>
<name>cloudpos14_x</name>
<type>float</type>
<value><use>cloudpos14_x</use></value>
</uniform>
<uniform>
<name>cloudpos14_y</name>
<type>float</type>
<value><use>cloudpos14_y</use></value>
</uniform>
<uniform>
<name>cloudpos15_x</name>
<type>float</type>
<value><use>cloudpos15_x</use></value>
</uniform>
<uniform>
<name>cloudpos15_y</name>
<type>float</type>
<value><use>cloudpos15_y</use></value>
</uniform>
<uniform>
<name>cloudpos16_x</name>
<type>float</type>
<value><use>cloudpos16_x</use></value>
</uniform>
<uniform>
<name>cloudpos16_y</name>
<type>float</type>
<value><use>cloudpos16_y</use></value>
</uniform>
<uniform>
<name>cloudpos17_x</name>
<type>float</type>
<value><use>cloudpos17_x</use></value>
</uniform>
<uniform>
<name>cloudpos17_y</name>
<type>float</type>
<value><use>cloudpos17_y</use></value>
</uniform>
<uniform>
<name>cloudpos18_x</name>
<type>float</type>
<value><use>cloudpos18_x</use></value>
</uniform>
<uniform>
<name>cloudpos18_y</name>
<type>float</type>
<value><use>cloudpos18_y</use></value>
</uniform>
<uniform>
<name>cloudpos19_x</name>
<type>float</type>
<value><use>cloudpos19_x</use></value>
</uniform>
<uniform>
<name>cloudpos19_y</name>
<type>float</type>
<value><use>cloudpos19_y</use></value>
</uniform>
<uniform>
<name>cloudpos20_x</name>
<type>float</type>
<value><use>cloudpos20_x</use></value>
</uniform>
<uniform>
<name>cloudpos20_y</name>
<type>float</type>
<value><use>cloudpos20_y</use></value>
</uniform>
<uniform>
<name>cloud_shadow_flag</name>
<type>int</type>
<value><use>cloud_shadow_flag</use></value>
</uniform>
<uniform>
<name>use_searchlight</name>
<type>int</type>
<value> <use>use_searchlight</use></value>
</uniform>
<uniform>
<name>use_landing_light</name>
<type>int</type>
<value> <use>use_landing_light</use></value>
</uniform>
<uniform>
<name>use_alt_landing_light</name>
<type>int</type>
<value> <use>use_alt_landing_light</use></value>
</uniform>
<uniform>
<name>display_xsize</name>
<type>int</type>
<value><use>display_xsize</use></value>
</uniform>
<uniform>
<name>display_ysize</name>
<type>int</type>
<value><use>display_ysize</use></value>
</uniform>
<uniform>
<name>num_deciduous_trees</name>
<type>int</type>
<value><use>num_deciduous_trees</use></value>
</uniform>
<uniform>
<name>use_forest_effect</name>
<type>bool</type>
<value><use>use_forest_effect</use></value>
</uniform>
<uniform>
<name>use_tree_shadows</name>
<type>bool</type>
<value><use>use_tree_shadows</use></value>
</uniform>
<uniform>
<name>forest_effect_size</name>
<type>float</type>
<value><use>forest_effect_size</use></value>
</uniform>
<uniform>
<name>forest_effect_shape</name>
<type>float</type>
<value><use>forest_effect_shape</use></value>
</uniform>
<uniform>
<name>texture</name>
<type>sampler-2d</type>
<value type="int">0</value>
</uniform>
<uniform>
<name>colorMode</name>
<type>int</type>
<value>2</value> <!-- AMBIENT_AND_DIFFUSE -->
</uniform>
<uniform>
<name>quality_level</name>
<type>int</type>
<value><use>quality_level</use></value>
</uniform>
<uniform>
<name>tquality_level</name>
<type>int</type>
<value><use>tquality_level</use></value>
</uniform>
<uniform>
<name>wind_effects</name>
<type>int</type>
<value><use>wind_effects</use></value>
</uniform>
<uniform>
<name>forest_effects</name>
<type>int</type>
<value><use>forest_effects</use></value>
</uniform>
</pass>
</technique>
<technique n="4">
<predicate>
<and>
@ -484,6 +935,21 @@
<type>int</type>
<value><use>num_deciduous_trees</use></value>
</uniform>
<uniform>
<name>use_forest_effect</name>
<type>bool</type>
<value><use>use_forest_effect</use></value>
</uniform>
<uniform>
<name>forest_effect_size</name>
<type>float</type>
<value><use>forest_effect_size</use></value>
</uniform>
<uniform>
<name>forest_effect_shape</name>
<type>float</type>
<value><use>forest_effect_shape</use></value>
</uniform>
<uniform>
<name>texture</name>
<type>sampler-2d</type>
@ -909,7 +1375,22 @@
<name>num_deciduous_trees</name>
<type>int</type>
<value><use>num_deciduous_trees</use></value>
</uniform>
</uniform>
<uniform>
<name>use_forest_effect</name>
<type>bool</type>
<value><use>use_forest_effect</use></value>
</uniform>
<uniform>
<name>forest_effect_size</name>
<type>float</type>
<value><use>forest_effect_size</use></value>
</uniform>
<uniform>
<name>forest_effect_shape</name>
<type>float</type>
<value><use>forest_effect_shape</use></value>
</uniform>
<uniform>
<name>texture</name>
<type>sampler-2d</type>

View file

@ -0,0 +1,391 @@
// -*-C++-*-
// written by Thorsten Renk, Oct 2011, based on default.frag
varying vec3 relPos;
uniform sampler2D texture;
varying float yprime_alt;
varying float is_shadow;
varying float autumn_flag;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float ground_scattering;
uniform float cloud_self_shading;
uniform float terminator;
uniform float terrain_alt;
uniform float hazeLayerAltitude;
uniform float overcast;
uniform float eye_alt;
uniform float dust_cover_factor;
uniform float air_pollution;
uniform float landing_light1_offset;
uniform float landing_light2_offset;
uniform float cseason;
uniform int use_searchlight;
uniform int use_landing_light;
uniform int use_alt_landing_light;
uniform int quality_level;
uniform int tquality_level;
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float alt;
float mie_angle;
float light_distance_fading(in float dist);
float fog_backscatter(in float avisibility);
float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt);
vec3 searchlight();
vec3 landing_light(in float offset);
vec3 get_hazeColor(in float light_arg);
float luminance(vec3 color)
{
return dot(vec3(0.212671, 0.715160, 0.072169), color);
}
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
x = x - 0.5;
// use the asymptotics to shorten computations
if (x > 30.0) {return e;}
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
// this determines how light is attenuated in the distance
// physically this should be exp(-arg) but for technical reasons we use a sharper cutoff
// for distance > visibility
float tree_fog_func (in float targ)
{
float fade_mix;
// for large altitude > 30 km, we switch to some component of quadratic distance fading to
// create the illusion of improved visibility range
targ = 1.25 * targ * smoothstep(0.07,0.1,targ); // need to sync with the distance to which terrain is drawn
if (alt < 30000.0)
{return exp(-targ - targ * targ * targ * targ);}
else if (alt < 50000.0)
{
fade_mix = (alt - 30000.0)/20000.0;
return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0));
}
else
{
return exp(- targ * targ - pow(targ,4.0));
}
}
float rand2D(in vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
float simple_interpolate(in float a, in float b, in float x)
{
return a + smoothstep(0.0,1.0,x) * (b-a);
}
float interpolatedNoise2D(in float x, in float y)
{
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float v1 = rand2D(vec2(integer_x, integer_y));
float v2 = rand2D(vec2(integer_x+1.0, integer_y));
float v3 = rand2D(vec2(integer_x, integer_y+1.0));
float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0));
float i1 = simple_interpolate(v1 , v2 , fractional_x);
float i2 = simple_interpolate(v3 , v4 , fractional_x);
return simple_interpolate(i1 , i2 , fractional_y);
}
float Noise2D(in vec2 coord, in float wavelength)
{
return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength);
}
void main()
{
if (is_shadow > 1.0) {discard;}
vec3 shadedFogColor = vec3(0.65, 0.67, 0.78);
vec3 lightDir = gl_LightSource[0].position.xyz;
float intensity;
mie_angle = gl_Color.a;
vec4 texel = texture2D(texture, gl_TexCoord[0].st);
// angle with horizon
float dist = length(relPos);
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
// determine tree shadow properties
if (is_shadow>0.0)
{
if (ct > -0.1) {discard;} // we eliminate shadows above the camera to avoid artifacts
float illumination = length(gl_Color.rgb);
texel = vec4 (0.1,0.1,0.1,texel.a);
texel.a *= illumination;// * smoothstep(0.0, 0.2, is_shadow);
texel.a *=0.6 * smoothstep(0.5,0.8,scattering);
texel.a = min(0.8, texel.a);
}
float effective_scattering = min(scattering, cloud_self_shading);
if (quality_level > 3)
{
// seasonal color changes
if ((cseason < 1.5)&& (autumn_flag > 0.0) && (is_shadow <0.0))
{
texel.r = min(1.0, (1.0 + 5.0 *cseason * autumn_flag ) * texel.r);
texel.b = max(0.0, (1.0 - 8.0 * cseason) * texel.b);
}
// mix dust
vec4 dust_color = vec4 (0.76, 0.71, 0.56, texel.a);
texel = mix(texel, dust_color, clamp(0.6 * dust_cover_factor ,0.0, 1.0) );
}
// ALS secondary light sources
vec3 secondary_light = vec3 (0.0,0.0,0.0);
if ((quality_level>5) && (tquality_level>5))
{
if (use_searchlight == 1)
{
secondary_light += searchlight();
}
if (use_landing_light == 1)
{
secondary_light += landing_light(landing_light1_offset);
}
if (use_alt_landing_light == 1)
{
secondary_light += landing_light(landing_light2_offset);
}
}
vec4 fragColor = vec4 (gl_Color.rgb +secondary_light * light_distance_fading(dist),1.0) * texel;
// Rayleigh haze
float lightArg = (terminator-yprime_alt)/100000.0;
vec3 hazeColor = get_hazeColor(lightArg);
// Rayleigh color shift due to in-scattering
if ((quality_level > 5) && (tquality_level > 5))
{
float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0);
float lightIntensity = length(hazeColor * effective_scattering) * rShade;
vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity;
float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z);
fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength);
}
// here comes the terrain haze model
float delta_z = hazeLayerAltitude - eye_alt;
if (dist > max(40.0, 0.07 * min(visibility,avisibility)))
{
alt = eye_alt;
float transmission;
float vAltitude;
float delta_zv;
float H;
float distance_in_layer;
float transmission_arg;
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
if (delta_z > 0.0) // we're inside the layer
{
if (ct < 0.0) // we look down
{
distance_in_layer = dist;
vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct;
delta_zv = delta_z - vAltitude;
}
else // we may look through upper layer edge
{
H = dist * ct;
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
else {distance_in_layer = dist;}
vAltitude = min(distance_in_layer,visibility) * ct;
delta_zv = delta_z - vAltitude;
}
}
else // we see the layer from above, delta_z < 0.0
{
H = dist * -ct;
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
{
distance_in_layer = 0.0;
delta_zv = 0.0;
}
else
{
vAltitude = H + delta_z;
distance_in_layer = vAltitude/H * dist;
vAltitude = min(distance_in_layer,visibility) * (-ct);
delta_zv = vAltitude;
}
}
// blur of the haze layer edge
float blur_thickness = 50.0;
float cphi = dot(vec3(0.0, 1.0, 0.0), relPos)/dist;
float ctlayer;
float ctblur = 0.035 ;
float blur_dist;
if ((abs(delta_z) < 400.0)&&(quality_level>5)&&(tquality_level>5))
{
ctlayer = delta_z/dist-0.01 + 0.02 * Noise2D(vec2(cphi,1.0),0.1) -0.01;
blur_dist = dist * (1.0-smoothstep(0.0,300.0,-delta_z)) * smoothstep(-400.0,-200.0, -delta_z);
blur_dist = blur_dist * smoothstep(ctlayer-4.0*ctblur, ctlayer-ctblur, ct) * (1.0-smoothstep(ctlayer+0.5*ctblur, ctlayer+ctblur, ct));
distance_in_layer = max(distance_in_layer, blur_dist);
}
// ground haze cannot be thinner than aloft visibility in the model,
// so we need to use aloft visibility otherwise
transmission_arg = (dist-distance_in_layer)/avisibility;
float eqColorFactor;
//float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, relPos.z + eye_alt);
if (visibility < avisibility)
{
transmission_arg = transmission_arg + (distance_in_layer/visibility);
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
}
transmission = tree_fog_func(transmission_arg);
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
// now dim the light for haze
float eShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1;
// Mie-like factor
if (lightArg < 10.0)
{intensity = length(hazeColor);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
}
// high altitude desaturation of the haze color
intensity = length(hazeColor);
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue of haze
hazeColor.x = hazeColor.x * 0.83;
hazeColor.y = hazeColor.y * 0.9;
// additional blue in indirect light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hazeColor);
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
// change haze color to blue hue for strong fogging
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
// determine the right mix of transmission and haze
hazeColor = clamp(hazeColor,0.0,1.0);
fragColor.rgb = mix(eqColorFactor * hazeColor * eShade + secondary_light * fog_backscatter(avisibility), fragColor.rgb,transmission);
gl_FragColor = fragColor;
}
else // if dist < 40.0 no fogging at all
{
gl_FragColor = fragColor;
}
//gl_FragColor.rgb = gl_SecondaryColor.rgb;
}

View file

@ -0,0 +1,329 @@
// -*-C++-*-
// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Diffuse colors come from the gl_Color, ambient from the material. This is
// equivalent to osg::Material::DIFFUSE.
// Haze part added by Thorsten Renk, Oct. 2011
#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.
varying vec3 relPos;
varying float yprime_alt;
varying float is_shadow;
varying float autumn_flag;
uniform int colorMode;
uniform int wind_effects;
uniform int forest_effects;
uniform int num_deciduous_trees;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float terrain_alt;
uniform float avisibility;
uniform float visibility;
uniform float overcast;
uniform float ground_scattering;
uniform float snow_level;
uniform float season;
uniform float forest_effect_size;
uniform float forest_effect_shape;
uniform float WindN;
uniform float WindE;
uniform bool use_tree_shadows;
uniform bool use_forest_effect;
uniform float osg_SimulationTime;
uniform int cloud_shadow_flag;
float earthShade;
float mie_angle;
float shadow_func (in float x, in float y, in float noise, in float dist);
float VoronoiNoise2D(in vec2 coord, in float wavelength, in float xrand, in float yrand);
// This is the value used in the skydome scattering shader - use the same here for consistency?
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
//x = x - 0.5;
// use the asymptotics to shorten computations
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
void main()
{
//vec4 light_diffuse;
vec4 light_ambient;
vec3 shadedFogColor = vec3(0.65, 0.67, 0.78);
float yprime;
float lightArg;
float intensity;
float vertex_alt;
float scattering;
is_shadow = -1.0;
// establish coordinates relative to sun position
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
// this code is copied from tree.vert
float numVarieties = gl_Normal.z;
float texFract = floor(fract(gl_MultiTexCoord0.x) * numVarieties) / numVarieties;
// determine whether the tree changes color in autumn
if (texFract < float(num_deciduous_trees)/float(numVarieties)) {autumn_flag = 0.5 + fract(gl_Color.x);}
else {autumn_flag = 0.0;}
texFract += floor(gl_MultiTexCoord0.x) / numVarieties;
// Determine the rotation for the tree. The Fog Coordinate provides rotation information
// to rotate one of the quands by 90 degrees. We then apply an additional position seed
// so that trees aren't all oriented N/S
float sr;
float cr;
sr = sin(gl_FogCoord + gl_Color.x);
cr = cos(gl_FogCoord + gl_Color.x);
if (gl_FogCoord < 0.0)
{
sr = dot(lightHorizon.xy, vec2 (0.0,1.0));
cr = dot(lightHorizon.xy, vec2 (-1.0,0.0));
}
gl_TexCoord[0] = vec4(texFract, gl_MultiTexCoord0.y, 0.0, 0.0);
// Determine the y texture coordinate based on whether it's summer, winter, snowy.
gl_TexCoord[0].y = gl_TexCoord[0].y + 0.25 * step(snow_level, gl_Color.z) + 0.5 * season;
// scaling
vec3 position = gl_Vertex.xyz * gl_Normal.xxy;
// Rotation of the generic quad to specific one for the tree.
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
// Shear by wind. Note that this only applies to the top vertices
if (wind_effects > 0)
{
position.x = position.x + position.z * (sin(osg_SimulationTime * 1.8 + (gl_Color.x + gl_Color.y + gl_Color.z) * 0.01) + 1.0) * 0.0025 * WindN;
position.y = position.y + position.z * (sin(osg_SimulationTime * 1.8 + (gl_Color.x + gl_Color.y + gl_Color.z) * 0.01) + 1.0) * 0.0025 * WindE;
}
// Scale by random domains
float voronoi;
if ((forest_effects > 0)&& use_forest_effect)
{
voronoi = 0.5 + 1.0 * VoronoiNoise2D(gl_Color.xy, forest_effect_size, forest_effect_shape, forest_effect_shape);
position.xyz = position.xyz * voronoi;
}
// check if this is a shadow quad
if ((gl_FogCoord <0.0)&&(use_tree_shadows))
{
is_shadow = 1.0;
float sinAlpha = dot(lightFull, vec3 (0.0,0.0,1.0));
float cosAlpha = sqrt(1.0 - sinAlpha*sinAlpha);
float slope = dot(gl_SecondaryColor.xyz, vec3(0.0,0.0,1.0));
//float slope = 1.0;
position.x += position.z * clamp(cosAlpha/sinAlpha,-5.0,5.0) * -dot(lightHorizon.xy, vec2(1.0,0.0));
position.y += position.z * clamp(cosAlpha/sinAlpha,-5.0,5.0) * -dot(lightHorizon.xy, vec2 (0.0,1.0));
if (position.z > 3.0) // we deal with an upper vertex
{
vec3 terrainNormal = gl_SecondaryColor.xyz;
position.z = 0.4 + 10.0*(1.0 - slope) ;
float sinPhi = dot(terrainNormal, vec3(1.0,0.0,0.0));
float sinPsi = dot(terrainNormal, vec3(0.0,1.0,0.0));
position.z -= position.x * sinPhi;
position.z -= position.y * sinPsi;
}
else
{position.z = 0.4 + 10.0* (1.0-slope);}
}
// Move to correct location (stored in gl_Color)
position = position + gl_Color.xyz;
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
vec3 ecPosition = vec3(gl_ModelViewMatrix * vec4(position, 1.0));
//normal = normalize(-ecPosition);
//float n = dot(normalize(gl_LightSource[0].position.xyz), normalize(-ecPosition));
//vec4 diffuse_color = gl_FrontMaterial.diffuse * max(0.1, n);
//diffuse_color.a = 1.0;
vec4 ambient_color = gl_FrontMaterial.ambient;
// here start computations for the haze layer
// we need several geometrical quantities
// first current altitude of eye position in model space
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
// and relative position to vector
relPos = position - ep.xyz;
// unfortunately, we need the distance in the vertex shader, although the more accurate version
// is later computed in the fragment shader again
float dist = length(relPos);
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
vertex_alt = max(position.z,100.0);
scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
// check whether we should see a shadow
if (is_shadow >0.0)
{
float view_angle = dot ((gl_SecondaryColor.xyz), normalize(relPos));
if (view_angle < 0.0) {is_shadow = -view_angle;}
else {is_shadow = 5.0;}
// the surface element will be in shadow
if (dot(normalize(lightFull),(gl_SecondaryColor.xyz)) < 0.0)
{ is_shadow = 5.0;}
}
// branch dependent on daytime
if (terminator < 1000000.0) // the full, sunrise and sunset computation
{
// yprime is the distance of the vertex into sun direction
yprime = -dot(relPos, lightHorizon);
// this gets an altitude correction, higher terrain gets to see the sun earlier
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
// two times terminator width governs how quickly light fades into shadow
// now the light-dimming factor
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
// parametrized version of the Flightgear ground lighting function
lightArg = (terminator-yprime_alt)/100000.0;
// directional scattering for low sun
if (lightArg < 10.0)
{mie_angle = (0.5 * dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
else
{mie_angle = 1.0;}
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
// correct ambient light intensity and hue before sunrise
if (earthShade < 0.5)
{
//light_ambient = light_ambient * (0.4 + 0.6 * smoothstep(0.2, 0.5, earthShade));
intensity = length(light_ambient.rgb);
light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.8,earthShade) ));
}
// the haze gets the light at the altitude of the haze top if the vertex in view is below
// but the light at the vertex if the vertex is above
vertex_alt = max(vertex_alt,hazeLayerAltitude);
if (vertex_alt > hazeLayerAltitude)
{
if (dist > 0.8 * avisibility)
{
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else
{
vertex_alt = hazeLayerAltitude;
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else // the faster, full-day version without lightfields
{
earthShade = 1.0;
mie_angle = 1.0;
if (terminator > 3000000.0)
{light_ambient = vec4 (0.33, 0.4, 0.5, 1.0); }
else
{
lightArg = (terminator/100000.0 - 10.0)/20.0;
light_ambient.r = 0.316 + lightArg * 0.016;
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
}
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
light_ambient.rgb = light_ambient.rgb * (1.0 + smoothstep(1000000.0, 3000000.0,terminator));
// tree shader lighting
if (cloud_shadow_flag == 1)
{light_ambient.rgb = light_ambient.rgb * (0.5 + 0.5 * shadow_func(relPos.x, relPos.y, 1.0, dist));}
//vec4 ambientColor = gl_FrontLightModelProduct.sceneColor +
//gl_FrontColor = ambientColor;
gl_FrontColor = light_ambient * gl_FrontMaterial.ambient;
gl_FrontColor.a = mie_angle; gl_BackColor.a = mie_angle;
//gl_FrontSecondaryColor = vec4 (1.0,1.0,1.0,1.0) * 5.0*(1.0-dot(gl_SecondaryColor.rgb, vec3 (0.0,0.0,1.0)));
//gl_BackSecondaryColor = vec4 (1.0,1.0,1.0,1.0) * 5.0 * (1.0-dot(gl_SecondaryColor.rgb, vec3 (0.0,0.0,1.0)));
}

View file

@ -37,6 +37,8 @@ uniform float overcast;
uniform float ground_scattering;
uniform float snow_level;
uniform float season;
uniform float forest_effect_size;
uniform float forest_effect_shape;
uniform float WindN;
uniform float WindE;
@ -44,6 +46,8 @@ uniform float osg_SimulationTime;
uniform int cloud_shadow_flag;
uniform bool use_forest_effect;
float earthShade;
float mie_angle;
@ -116,9 +120,9 @@ void main()
// Scale by random domains
float voronoi;
if (forest_effects > 0)
if ((forest_effects > 0)&& use_forest_effect)
{
voronoi = 0.5 + 1.0 * VoronoiNoise2D(gl_Color.xy, 200.0, 1.5, 1.5);
voronoi = 0.5 + 1.0 * VoronoiNoise2D(gl_Color.xy, forest_effect_size, forest_effect_shape, forest_effect_shape);
position.xyz = position.xyz * voronoi;
}

View file

@ -363,6 +363,38 @@
</enable>
</text>
<checkbox>
<enable>
<property>/sim/rendering/shaders/skydome</property>
</enable>
<row>5</row>
<col>0</col>
<halign>left</halign>
<label>Random vegetation shadows</label>
<name>tree-shadows</name>
<property>/sim/rendering/random-vegetation-shadows</property>
<binding>
<command>dialog-apply</command>
<object-name>tree-shadows</object-name>
</binding>
</checkbox>
<text>
<enable>
<property>/sim/rendering/shaders/skydome</property>
</enable>
<row>5</row>
<col>1</col>
<colspan>3</colspan>
<color>
<red>1.0</red>
<green>0.6</green>
<blue>0.6</blue>
</color>
<label>(needs ALS and antialiasing)</label>
</text>
</group>
<group>
@ -635,7 +667,7 @@
<col>0</col>
<checkbox>
<halign>left</halign>
<label>Atmospheric light scattering</label>
<label>Atmospheric light scattering (ALS)</label>
<name>skydome-scattering</name>
<visible>
<not>
@ -798,6 +830,7 @@
"/sim/rendering/random-buildings",
"/sim/rendering/random-objects",
"/sim/rendering/random-vegetation",
"/sim/rendering/random-vegetation-shadows",
"/sim/rendering/vegetation-density",
"/sim/rendering/clouds3d-enable",
"/sim/rendering/clouds3d-density"];

View file

@ -174,6 +174,8 @@ Started September 2000 by David Megginson, david@megginson.com
</static-lod>
<random-objects type="bool" userarchive="y">true</random-objects>
<random-vegetation type="bool" userarchive="y">true</random-vegetation>
<random-vegetation-shadows type="bool" userarchive="y">false</random-vegetation-shadows>
<random-vegetation-normals type="bool" userarchive="y">false</random-vegetation-normals>
<vegetation-density type="double" userarchive="y">1.0</vegetation-density>
<random-buildings type="bool" userarchive="y">false</random-buildings>
<building-density type="double" userarchive="y">1.0</building-density>