1
0
Fork 0
terragear/src/BuildTiles/Main/construct.cxx
2012-10-06 22:10:07 +02:00

2130 lines
72 KiB
C++

// construct.cxx -- Class to manage the primary data used in the
// construction process
//
// Written by Curtis Olson, started May 1999.
//
// Copyright (C) 1999 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id: construct.cxx,v 1.4 2004-11-19 22:25:49 curt Exp $
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <iostream>
#include <sstream>
#include <boost/foreach.hpp>
#include <simgear/compiler.h>
#include <simgear/constants.h>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/math/SGGeometry.hxx>
#include <simgear/misc/sg_dir.hxx>
#include <simgear/misc/texcoord.hxx>
#include <simgear/io/sg_binobj.hxx>
#include <simgear/structure/exception.hxx>
#include <simgear/debug/logstream.hxx>
#include <Geometry/poly_support.hxx>
#include <Geometry/poly_extra.hxx>
#include <Match/match.hxx>
#include <Osgb36/osgb36.hxx>
#include "construct.hxx"
#include "usgs.hxx"
using std::string;
double gSnap = 0.00000001; // approx 1 mm
static const double cover_size = 1.0 / 120.0;
static const double half_cover_size = cover_size * 0.5;
static unsigned int cur_poly_id = 0;
// If we don't offset land use squares by some amount, then we can get
// land use square boundaries coinciding with tile boundaries.
//
// This can foul up our edge matching scheme because a subsequently
// generated adjacent tile might be forced to have edge nodes not
// found in the first tile and not on the shared edge. This can lead
// to gaps. If we put skirts around everything that might hide the
// problem.
static const double quarter_cover_size = cover_size * 0.25;
// Constructor
TGConstruct::TGConstruct():
useUKGrid(false),
writeSharedEdges(true),
useOwnSharedEdges(false),
debug_all(false),
ds_id((void*)-1)
{ }
// Destructor
TGConstruct::~TGConstruct() {
array.close();
// land class polygons
polys_in.clear();
polys_clipped.clear();
// All Nodes
nodes.clear();
}
void TGConstruct::set_debug( std::string path, std::vector<string> defs )
{
SG_LOG(SG_GENERAL, SG_ALERT, "Set debug Path " << path);
debug_path = path;
/* Find any ids for our tile */
for (unsigned int i=0; i< defs.size(); i++) {
string dsd = defs[i];
size_t d_pos = dsd.find(":");
string tile = dsd.substr(0, d_pos);
if( tile == bucket.gen_index_str() ) {
dsd.erase(0, d_pos+1);
if ( dsd == "all" ) {
debug_all = true;
} else {
std::stringstream ss(dsd);
int i;
while (ss >> i)
{
SG_LOG(SG_GENERAL, SG_ALERT, "Adding debug file " << i);
debug_shapes.push_back(i);
if (ss.peek() == ',')
ss.ignore();
}
}
}
}
}
bool TGConstruct::IsDebugShape( unsigned int id )
{
bool is_debug = false;
/* Check global flag */
if ( debug_all ) {
is_debug = true;
} else {
for (unsigned int i=0; i<debug_shapes.size(); i++) {
if ( debug_shapes[i] == id ) {
is_debug = true;
break;
}
}
}
return is_debug;
}
void TGConstruct::WriteDebugShape( const char* layer_name, const TGShape& shape )
{
char name[64];
shape.GetName( name );
ds_id = tgShapefileOpenDatasource( ds_name );
l_id = tgShapefileOpenLayer( ds_id, layer_name );
tgShapefileCreateFeature( ds_id, l_id, shape.clip_mask, "test" );
// close after each write
ds_id = tgShapefileCloseDatasource( ds_id );
}
void TGConstruct::WriteDebugPoly( const char* layer_name, const char* name, const TGPolygon& poly )
{
ds_id = tgShapefileOpenDatasource( ds_name );
l_id = tgShapefileOpenLayer( ds_id, layer_name );
tgShapefileCreateFeature( ds_id, l_id, poly, name );
// close after each write
ds_id = tgShapefileCloseDatasource( ds_id );
}
void TGConstruct::WriteDebugPolys( const char* layer_name, const poly_list& polys )
{
ds_id = tgShapefileOpenDatasource( ds_name );
l_id = tgShapefileOpenLayer( ds_id, layer_name );
for( unsigned int i=0; i<polys.size(); i++ ) {
sprintf( feature_name, "poly_%d", i );
tgShapefileCreateFeature( ds_id, l_id, polys[i], feature_name );
}
// close after each write
ds_id = tgShapefileCloseDatasource( ds_id );
}
// STEP 1
// Load elevation data from an Array file (a regular grid of elevation data)
// and return list of fitted nodes.
void TGConstruct::LoadElevationArray( void ) {
string base = bucket.gen_base_path();
int i;
for ( i = 0; i < (int)load_dirs.size(); ++i ) {
string array_path = get_work_base() + "/" + load_dirs[i] + "/" + base + "/" + bucket.gen_index_str();
if ( array.open(array_path) ) {
break;
} else {
SG_LOG(SG_GENERAL, SG_DEBUG, "Failed to open Array file " << array_path);
}
}
array.parse( bucket );
array.remove_voids( );
point_list corner_list = array.get_corner_list();
for (unsigned int i=0; i<corner_list.size(); i++) {
nodes.unique_add(corner_list[i]);
}
point_list fit_list = array.get_fitted_list();
for (unsigned int i=0; i<fit_list.size(); i++) {
nodes.unique_add(fit_list[i]);
}
}
// Add a polygon to the clipper.
void TGConstruct::add_poly( int area, const TGPolygon &poly, string material ) {
TGShape shape;
TGSuperPoly sp;
if ( area < TG_MAX_AREA_TYPES ) {
sp.set_poly( poly );
sp.set_material( material );
shape.sps.push_back( sp );
polys_in.add_shape( area, shape );
} else {
SG_LOG( SG_CLIPPER, SG_ALERT, "Polygon type out of range = " << area);
exit(-1);
}
}
bool TGConstruct::load_poly(const string& path) {
bool poly3d = false;
bool with_tp = false;
string first_line;
string poly_name;
AreaType poly_type;
int contours, count, i, j, k;
int hole_flag;
int num_polys;
double startx, starty, startz, x, y, z, lastx, lasty, lastz;
sg_gzifstream in( path );
if ( !in ) {
SG_LOG( SG_CLIPPER, SG_ALERT, "Cannot open file: " << path );
exit(-1);
}
TGPolygon poly;
TGTexParams tp;
Point3D p;
// (this could break things, why is it here) in >> skipcomment;
while ( !in.eof() ) {
in >> first_line;
if ( first_line == "#2D" ) {
poly3d = false;
with_tp = false;
in >> poly_name;
num_polys = 1;
} else if ( first_line == "#2D_WITH_MASK" ) {
poly3d = false;
with_tp = false;
in >> poly_name;
in >> num_polys;
} else if ( first_line == "#2D_WITH_TPS" ) {
poly3d = false;
with_tp = true;
in >> poly_name;
in >> num_polys;
} else if ( first_line == "#3D" ) {
poly3d = true;
with_tp = false;
in >> poly_name;
num_polys = 1;
} else {
// support old format (default to 2d)
poly3d = false;
with_tp = false;
poly_name = first_line;
num_polys = 1;
}
poly_type = get_area_type( poly_name );
int area = (int)poly_type;
string material;
// only allow 1000 shapes per material
int extension = polys_in.area_size( area ) / 1000;
if (extension)
{
char buff[32];
sprintf( buff, "%s_%d", get_area_name( area ).c_str(), extension );
material = buff;
}
else
{
material = get_area_name( area );
}
// Generate a new Shape for the poly
TGShape shape;
TGSuperPoly sp;
for (k=0; k<num_polys;k++) {
if ( with_tp ) {
double width, length;
double heading;
double minu, maxu;
double minv, maxv;
in >> x;
in >> y;
in >> width;
in >> length;
in >> heading;
in >> minu;
in >> maxu;
in >> minv;
in >> maxv;
tp.set_ref( Point3D(x, y, 0.0f) );
tp.set_width( width );
tp.set_length( length );
tp.set_heading( heading );
tp.set_minu( minu );
tp.set_maxu( maxu );
tp.set_minv( minv );
tp.set_maxv( maxv );
}
in >> contours;
poly.erase();
for ( i = 0; i < contours; ++i ) {
in >> count;
if ( count < 3 ) {
SG_LOG( SG_CLIPPER, SG_ALERT, "Polygon with less than 3 data points." );
exit(-1);
}
in >> hole_flag;
in >> startx;
in >> starty;
if ( poly3d ) {
in >> startz;
} else {
startz = -9999.0;
}
p = Point3D(startx+nudge, starty+nudge, startz);
p.snap( gSnap );
poly.add_node( i, p );
if ( poly3d ) {
nodes.unique_add_fixed_elevation( p );
} else {
nodes.unique_add( p );
}
for ( j = 1; j < count - 1; ++j ) {
in >> x;
in >> y;
if ( poly3d ) {
in >> z;
} else {
z = -9999.0;
}
p = Point3D( x+nudge, y+nudge, z );
p.snap( gSnap );
poly.add_node( i, p );
if ( poly3d ) {
nodes.unique_add_fixed_elevation( p );
} else {
nodes.unique_add( p );
}
}
in >> lastx;
in >> lasty;
if ( poly3d ) {
in >> lastz;
} else {
lastz = -9999.0;
}
if ( (fabs(startx - lastx) < SG_EPSILON) &&
(fabs(starty - lasty) < SG_EPSILON) &&
(fabs(startz - lastz) < SG_EPSILON) ) {
// last point same as first, discard
} else {
p = Point3D( lastx+nudge, lasty+nudge, lastz );
p.snap( gSnap );
poly.add_node( i, p );
if ( poly3d ) {
nodes.unique_add_fixed_elevation( p );
} else {
nodes.unique_add( p );
}
}
}
poly = remove_dups( poly );
sp.set_poly( poly );
sp.set_material( material );
shape.sps.push_back( sp );
if ( with_tp ) {
shape.textured = true;
shape.tps.push_back( tp );
}
else
{
shape.textured = false;
}
in >> skipcomment;
}
// Once the full poly is loaded, build the clip mask
shape.BuildMask();
shape.area = area;
shape.id = cur_poly_id++;
polys_in.add_shape( area, shape );
if ( IsDebugShape( shape.id ) ) {
WriteDebugShape( "loaded", shape );
}
}
return true;
}
// Load a polygon definition file containing osgb36 Eastings and Northings
// and convert them to WGS84 Latitude and Longitude
bool TGConstruct::load_osgb36_poly(const string& path) {
string poly_name;
AreaType poly_type;
int contours, count, i, j;
int hole_flag;
double startx, starty, x, y, lastx, lasty;
SG_LOG( SG_CLIPPER, SG_INFO, "Loading " << path << " ..." );
sg_gzifstream in( path );
if ( !in ) {
SG_LOG( SG_CLIPPER, SG_ALERT, "Cannot open file: " << path );
exit(-1);
}
TGPolygon poly;
Point3D p;
Point3D OSRef;
in >> skipcomment;
while ( !in.eof() ) {
in >> poly_name;
SG_LOG( SG_CLIPPER, SG_INFO, "poly name = " << poly_name);
poly_type = get_area_type( poly_name );
SG_LOG( SG_CLIPPER, SG_INFO, "poly type (int) = " << (int)poly_type);
in >> contours;
SG_LOG( SG_CLIPPER, SG_INFO, "num contours = " << contours);
poly.erase();
for ( i = 0; i < contours; ++i ) {
in >> count;
if ( count < 3 ) {
SG_LOG( SG_CLIPPER, SG_ALERT, "Polygon with less than 3 data points." );
exit(-1);
}
in >> hole_flag;
in >> startx;
in >> starty;
OSRef = Point3D(startx, starty, -9999.0);
//Convert from OSGB36 Eastings/Northings to WGS84 Lat/Lon
//Note that startx and starty themselves must not be altered since we compare them with unaltered lastx and lasty later
p = OSGB36ToWGS84(OSRef);
poly.add_node( i, p );
nodes.unique_add( p );
SG_LOG( SG_CLIPPER, SG_BULK, "0 = " << startx << ", " << starty );
for ( j = 1; j < count - 1; ++j ) {
in >> x;
in >> y;
OSRef = Point3D( x, y, -9999.0 );
p = OSGB36ToWGS84(OSRef);
poly.add_node( i, p );
nodes.unique_add( p );
SG_LOG( SG_CLIPPER, SG_BULK, j << " = " << x << ", " << y );
}
in >> lastx;
in >> lasty;
if ( (fabs(startx - lastx) < SG_EPSILON) &&
(fabs(starty - lasty) < SG_EPSILON) ) {
// last point same as first, discard
} else {
OSRef = Point3D( lastx, lasty, -9999.0 );
p = OSGB36ToWGS84(OSRef);
poly.add_node( i, p );
nodes.unique_add( p );
SG_LOG( SG_CLIPPER, SG_BULK, count - 1 << " = " << lastx << ", " << lasty );
}
}
// TODO : Make like OGR
int area = (int)poly_type;
string material = get_area_name( area );
add_poly(area, poly, material);
// END TODO
in >> skipcomment;
}
return true;
}
// load all 2d polygons from the specified load disk directories and
// clip against each other to resolve any overlaps
int TGConstruct::LoadLandclassPolys( void ) {
int i;
string base = bucket.gen_base_path();
string poly_path;
int count = 0;
polys_in.clear();
// load 2D polygons from all directories provided
for ( i = 0; i < (int)load_dirs.size(); ++i ) {
poly_path = get_work_base() + "/" + load_dirs[i] + '/' + base;
string tile_str = bucket.gen_index_str();
simgear::Dir d(poly_path);
if (!d.exists()) {
SG_LOG(SG_GENERAL, SG_DEBUG, "directory not found: " << poly_path);
continue;
}
simgear::PathList files = d.children(simgear::Dir::TYPE_FILE);
SG_LOG( SG_CLIPPER, SG_ALERT, files.size() << " Polys in " << d.path() );
BOOST_FOREACH(const SGPath& p, files) {
if (p.file_base() != tile_str) {
continue;
}
string lext = p.complete_lower_extension();
if ((lext == "arr") || (lext == "arr.gz") || (lext == "btg.gz") ||
(lext == "fit") || (lext == "fit.gz") || (lext == "ind"))
{
// skipped!
} else if (lext == "osgb36") {
SG_LOG(SG_GENERAL, SG_ALERT, " Loading osgb36 poly definition file " << p.file());
load_osgb36_poly( p.str() );
++count;
} else {
load_poly( p.str() );
SG_LOG(SG_GENERAL, SG_ALERT, " Loaded " << p.file());
++count;
}
} // of directory file children
}
SG_LOG(SG_GENERAL, SG_ALERT, " Total polys used for this tile: " << count );
return count;
}
// Add a polygon to a list, merging if possible.
//
// Merge a polygon with an existing one if possible, append a new one
// otherwise; this function is used by actual_load_landcover, below,
// to reduce the number of separate polygons.
void TGConstruct::add_to_polys ( TGPolygon &accum, const TGPolygon &poly) {
if ( accum.contours() > 0 ) {
accum = tgPolygonUnionClipper( accum, poly );
} else {
accum = poly;
}
}
// make the area specified area, look up the land cover type, and add
// it to polys
void TGConstruct::make_area( const LandCover &cover, TGPolygon *polys,
double x1, double y1, double x2, double y2,
double half_dx, double half_dy )
{
const double fudge = 0.0001; // (0.0001 degrees =~ 10 meters)
AreaType area = get_landcover_type( cover,
x1 + half_dx, y1 + half_dy,
x2 - x1, y2 - y1 );
if ( area != get_default_area_type() ) {
// Create a square polygon and merge it into the list.
TGPolygon poly;
poly.erase();
poly.add_node(0, Point3D(x1 - fudge, y1 - fudge, 0.0));
poly.add_node(0, Point3D(x1 - fudge, y2 + fudge, 0.0));
poly.add_node(0, Point3D(x2 + fudge, y2 + fudge, 0.0));
poly.add_node(0, Point3D(x2 + fudge, y1 - fudge, 0.0));
if ( measure_roughness( poly ) < 1.0 ) {
add_to_polys(polys[area], poly);
}
}
}
// Come up with a "rough" metric for the roughness of the terrain
// coverted by a polygon
double TGConstruct::measure_roughness( TGPolygon &poly ) {
int i;
unsigned int j;
// find the elevation range
double max_z = -9999.0;
double min_z = 9999.0;
for ( i = 0; i < poly.contours(); ++i ) {
point_list points = poly.get_contour( i );
for ( j = 0; j < points.size(); ++j ) {
double z;
z = array.altitude_from_grid( points[j].x() * 3600.0,
points[j].y() * 3600.0 );
if ( z < -9000 ) {
z = array.closest_nonvoid_elev( points[j].x() * 3600.0,
points[j].y() * 3600.0 );
}
if ( z < min_z ) {
min_z = z;
}
if ( z > max_z ) {
max_z = z;
}
}
}
double diff = max_z - min_z;
// 50m difference in polygon elevation range yields a roughness
// metric of 1.0. Less than 1.0 is relatively flat. More than
// 1.0 is relatively rough.
SG_LOG(SG_GENERAL, SG_ALERT, "roughness = " << diff / 50.0 );
return diff / 50.0;
}
AreaType TGConstruct::get_landcover_type (const LandCover &cover, double xpos, double ypos, double dx, double dy)
{
// Look up the land cover for the square
int cover_value = cover.getValue(xpos, ypos);
AreaType area = translateUSGSCover(cover_value);
if ( area != get_default_area_type() ) {
// Non-default area is fine.
return area;
} else {
// If we're stuck with the default area, try to borrow from a
// neighbour.
for (double x = xpos - dx; x <= xpos + dx; x += dx) {
for (double y = ypos - dy; y < ypos + dx; y += dy) {
if (x != xpos || y != ypos) {
cover_value = cover.getValue(x, y);
area = translateUSGSCover(cover_value);
if (area != get_default_area_type() ) {
return area;
}
}
}
}
}
// OK, give up and return default
return get_default_area_type();
}
// Generate polygons from land-cover raster. Horizontally- or
// vertically-adjacent polygons will be merged automatically.
int TGConstruct::load_landcover()
{
int count = 0;
try {
LandCover cover(get_cover());
TGPolygon polys[TG_MAX_AREA_TYPES];
TGPolygon poly; // working polygon
// Get the lower left (SW) corner of the tile
double base_lon = bucket.get_center_lon()
- 0.5 * bucket.get_width()
- quarter_cover_size;
double base_lat = bucket.get_center_lat()
- 0.5 * bucket.get_height()
- quarter_cover_size;
SG_LOG(SG_GENERAL, SG_ALERT, "raster land cover: tile at " << base_lon << ',' << base_lat);
double max_lon = bucket.get_center_lon()
+ 0.5 * bucket.get_width();
double max_lat = bucket.get_center_lat()
+ 0.5 * bucket.get_height();
SG_LOG(SG_GENERAL, SG_ALERT, "raster land cover: extends to " << max_lon << ',' << max_lat);
double x1 = base_lon;
double y1 = base_lat;
double x2 = x1 + cover_size;
double y2 = y1 + cover_size;
while ( x1 < max_lon ) {
while ( y1 < max_lat ) {
make_area( cover, polys, x1, y1, x2, y2, half_cover_size, half_cover_size );
y1 = y2;
y2 += cover_size;
}
x1 = x2;
x2 += cover_size;
y1 = base_lat;
y2 = y1 + cover_size;
}
// Now that we're finished looking up land cover, we have a list
// of lists of polygons, one (possibly-empty) list for each area
// type. Add the remaining polygons to the clipper.
for ( int i = 0; i < TG_MAX_AREA_TYPES; i++ ) {
if ( polys[i].contours() ) {
// TODO : REMOVE add_poly
add_poly( i, polys[i], get_area_name((AreaType)i ));
count++;
}
}
} catch ( string e ) {
SG_LOG(SG_GENERAL, SG_ALERT, "Died with exception: " << e);
exit(-1);
}
// Return the number of polygons actually read.
return count;
}
void TGConstruct::FixTJunctions( void ) {
int before, after;
// traverse each poly, and add intermediate nodes
for ( unsigned int i = 0; i < TG_MAX_AREA_TYPES; ++i ) {
for( unsigned int j = 0; j < polys_clipped.area_size(i); ++j ) {
for( unsigned int k = 0; k < polys_clipped.shape_size(i, j); ++k ) {
TGPolygon current = polys_clipped.get_poly(i, j, k);
before = current.total_size();
current = add_tgnodes_to_poly( current, &nodes );
after = current.total_size();
if (before != after) {
SG_LOG( SG_CLIPPER, SG_INFO, "Fixed T-Junctions in " << get_area_name( (AreaType)i ) << ":" << j+1 << "-" << k << " of " << (int)polys_clipped.area_size(i) << " nodes increased from " << before << " to " << after );
}
/* Save it back */
polys_clipped.set_poly( i, j, k, current );
}
}
}
}
void TGConstruct::calc_gc_course_dist( const Point3D& start, const Point3D& dest,
double *course, double *dist )
{
SGGeoc gs = start.toSGGeoc();
SGGeoc gd = dest.toSGGeoc();
*course = SGGeoc::courseRad(gs, gd);
*dist = SGGeoc::distanceM(gs, gd);
}
// calculate spherical distance between two points (lon, lat specified
// in degrees, result returned in meters)
double TGConstruct::distanceSphere( const Point3D p1, const Point3D p2 ) {
Point3D r1( p1.x() * SG_DEGREES_TO_RADIANS,
p1.y() * SG_DEGREES_TO_RADIANS,
p1.z() );
Point3D r2( p2.x() * SG_DEGREES_TO_RADIANS,
p2.y() * SG_DEGREES_TO_RADIANS,
p2.z() );
double course, dist_m;
calc_gc_course_dist( r1, r2, &course, &dist_m );
return dist_m;
}
// fix the elevations of the geodetic nodes
// This should be done in the nodes class itself, except for the need for the triangle type
// hopefully, this will get better when we have the area lookup via superpoly...
void TGConstruct::CalcElevations( void )
{
TGPolyNodes tri_nodes;
double e1, e2, e3, min;
int n1, n2, n3;
Point3D p;
SG_LOG(SG_GENERAL, SG_ALERT, "fixing node heights");
for (int i = 0; i < (int)nodes.size(); ++i) {
TGNode node = nodes.get_node( i );
Point3D pos = node.GetPosition();
if ( !node.GetFixedPosition() ) {
// set elevation as interpolated point from DEM data.
nodes.SetElevation( i, array.altitude_from_grid(pos.x() * 3600.0, pos.y() * 3600.0) );
}
}
// now flatten some stuff
for (unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++) {
if ( is_lake_area( (AreaType)area ) ) {
for (int shape = 0; shape < (int)polys_clipped.area_size(area); ++shape ) {
for (int segment = 0; segment < (int)polys_clipped.shape_size(area, shape); ++segment ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Flattening " << get_area_name( (AreaType)area ) << ":" << shape+1 << "-" << segment << " of " << (int)polys_clipped.area_size(area) );
tri_nodes = polys_clipped.get_tri_idxs( area, shape, segment );
for (int tri=0; tri < tri_nodes.contours(); tri++) {
if (tri_nodes.contour_size( tri ) != 3) {
SG_LOG(SG_GENERAL, SG_ALERT, "triangle doesnt have 3 nodes" << tri_nodes.contour_size( tri ) );
exit(0);
}
n1 = tri_nodes.get_pt( tri, 0 );
e1 = nodes.get_node(n1).GetPosition().z();
n2 = tri_nodes.get_pt( tri, 1 );
e2 = nodes.get_node(n2).GetPosition().z();
n3 = tri_nodes.get_pt( tri, 2 );
e3 = nodes.get_node(n3).GetPosition().z();
min = e1;
if ( e2 < min ) { min = e2; }
if ( e3 < min ) { min = e3; }
nodes.SetElevation( n1, min );
nodes.SetElevation( n2, min );
nodes.SetElevation( n3, min );
}
}
}
}
if ( is_stream_area( (AreaType)area ) ) {
for (int shape = 0; shape < (int)polys_clipped.area_size(area); ++shape ) {
for (int segment = 0; segment < (int)polys_clipped.shape_size(area, shape); ++segment ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Flattening " << get_area_name( (AreaType)area ) << ":" << shape+1 << "-" << segment << " of " << (int)polys_clipped.area_size(area) );
tri_nodes = polys_clipped.get_tri_idxs( area, shape, segment );
for (int tri=0; tri < tri_nodes.contours(); tri++) {
if (tri_nodes.contour_size( tri ) != 3) {
SG_LOG(SG_GENERAL, SG_ALERT, "triangle doesnt have 3 nodes" << tri_nodes.contour_size( tri ) );
exit(0);
}
point_list raw_nodes = nodes.get_geod_nodes();
n1 = tri_nodes.get_pt( tri, 0 );
e1 = nodes.get_node(n1).GetPosition().z();
n2 = tri_nodes.get_pt( tri, 1 );
e2 = nodes.get_node(n2).GetPosition().z();
n3 = tri_nodes.get_pt( tri, 2 );
e3 = nodes.get_node(n3).GetPosition().z();
min = e1;
p = raw_nodes[n1];
if ( e2 < min ) { min = e2; p = raw_nodes[n2]; }
if ( e3 < min ) { min = e3; p = raw_nodes[n3]; }
double d1 = distanceSphere( p, raw_nodes[n1] );
double d2 = distanceSphere( p, raw_nodes[n2] );
double d3 = distanceSphere( p, raw_nodes[n3] );
double max1 = d1 * 0.20 + min;
double max2 = d2 * 0.20 + min;
double max3 = d3 * 0.20 + min;
if ( max1 < e1 ) { nodes.SetElevation( n1, max1 ); }
if ( max2 < e2 ) { nodes.SetElevation( n2, max2 ); }
if ( max3 < e3 ) { nodes.SetElevation( n3, max3 ); }
}
}
}
}
if ( is_road_area( (AreaType)area ) ) {
for (int shape = 0; shape < (int)polys_clipped.area_size(area); ++shape ) {
for (int segment = 0; segment < (int)polys_clipped.shape_size(area, shape); ++segment ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Flattening " << get_area_name( (AreaType)area ) << ":" << shape+1 << "-" << segment << " of " << (int)polys_clipped.area_size(area) );
tri_nodes = polys_clipped.get_tri_idxs( area, shape, segment );
for (int tri=0; tri < tri_nodes.contours(); tri++) {
if (tri_nodes.contour_size( tri ) != 3) {
SG_LOG(SG_GENERAL, SG_ALERT, "triangle doesnt have 3 nodes" << tri_nodes.contour_size( tri ) );
exit(0);
}
point_list raw_nodes = nodes.get_geod_nodes();
n1 = tri_nodes.get_pt( tri, 0 );
e1 = nodes.get_node(n1).GetPosition().z();
n2 = tri_nodes.get_pt( tri, 1 );
e2 = nodes.get_node(n2).GetPosition().z();
n3 = tri_nodes.get_pt( tri, 2 );
e3 = nodes.get_node(n3).GetPosition().z();
min = e1;
p = raw_nodes[n1];
if ( e2 < min ) { min = e2; p = raw_nodes[n2]; }
if ( e3 < min ) { min = e3; p = raw_nodes[n3]; }
double d1 = distanceSphere( p, raw_nodes[n1] );
double d2 = distanceSphere( p, raw_nodes[n2] );
double d3 = distanceSphere( p, raw_nodes[n3] );
double max1 = d1 * 0.30 + min;
double max2 = d2 * 0.30 + min;
double max3 = d3 * 0.30 + min;
if ( max1 < e1 ) { nodes.SetElevation( n1, max1 ); }
if ( max2 < e2 ) { nodes.SetElevation( n2, max2 ); }
if ( max3 < e3 ) { nodes.SetElevation( n3, max3 ); }
}
}
}
}
if ( is_ocean_area( (AreaType)area ) ) {
for (int shape = 0; shape < (int)polys_clipped.area_size(area); ++shape ) {
for (int segment = 0; segment < (int)polys_clipped.shape_size(area, shape); ++segment ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Flattening " << get_area_name( (AreaType)area ) << ":" << shape+1 << "-" << segment << " of " << (int)polys_clipped.area_size(area) );
tri_nodes = polys_clipped.get_tri_idxs( area, shape, segment );
for (int tri=0; tri < tri_nodes.contours(); tri++) {
if (tri_nodes.contour_size( tri ) != 3) {
SG_LOG(SG_GENERAL, SG_ALERT, "triangle doesnt have 3 nodes" << tri_nodes.contour_size( tri ) );
exit(0);
}
n1 = tri_nodes.get_pt( tri, 0 );
n2 = tri_nodes.get_pt( tri, 1 );
n3 = tri_nodes.get_pt( tri, 2 );
nodes.SetElevation( n1, 0.0 );
nodes.SetElevation( n2, 0.0 );
nodes.SetElevation( n3, 0.0 );
}
}
}
}
}
}
TGPolygon TGConstruct::area_tex_coords( const TGPolygon& tri )
{
TGPolygon result;
result.erase();
// lots of conversion needed to use simgear API - perhaps we need a new simgear API?
for (int c=0; c<tri.contours(); c++)
{
// get the points, and calculate the elevations
point_list nodes = tri.get_contour(c);
std::vector< SGGeod > conv_geods;
point_list tex_coords;
for (int i = 0; i < (int)nodes.size(); ++i )
{
SGGeod conv_geod = SGGeod::fromDegM( nodes[i].x(), nodes[i].y(), nodes[i].z() );
SG_LOG(SG_GENERAL, SG_DEBUG, "geod pt = " << nodes[i] );
conv_geods.push_back( conv_geod );
}
// now calculate texture coordinates
// generate identity interger list...
std::vector< int > node_idx;
for (int i = 0; i < (int)conv_geods.size(); i++) {
node_idx.push_back(i);
}
std::vector< SGVec2f > tp_list = sgCalcTexCoords( bucket, conv_geods, node_idx );
// generate a contour of texture coordinates from the tp list
for (int i = 0; i < (int)tp_list.size(); i++)
{
tex_coords.push_back( Point3D::fromSGVec2( tp_list[i] ) );
}
result.add_contour( tex_coords, 0 );
}
return result;
}
TGPolygon TGConstruct::linear_tex_coords( const TGPolygon& tri, const TGTexParams& tp )
{
TGPolygon result;
int i, j;
result.erase();
Point3D ref = tp.get_ref();
double width = tp.get_width();
double length = tp.get_length();
double heading = tp.get_heading();
double minu = tp.get_minu();
double maxu = tp.get_maxu();
double minv = tp.get_minv();
double maxv = tp.get_maxv();
SG_LOG( SG_GENERAL, SG_DEBUG, "section ref = " << ref );
SG_LOG( SG_GENERAL, SG_DEBUG, " width = " << width );
SG_LOG( SG_GENERAL, SG_DEBUG, " length = " << length );
SG_LOG( SG_GENERAL, SG_DEBUG, " heading = " << heading );
SG_LOG( SG_GENERAL, SG_DEBUG, " minv = " << minv );
SG_LOG( SG_GENERAL, SG_DEBUG, " maxv = " << maxv );
SG_LOG( SG_GENERAL, SG_DEBUG, " heading = " << heading );
Point3D p, t;
double x, y, tx, ty;
for ( i = 0; i < tri.contours(); ++i )
{
for ( j = 0; j < tri.contour_size( i ); ++j )
{
p = tri.get_pt( i, j );
SG_LOG(SG_GENERAL, SG_DEBUG, "tex coords for contour " << i << " point " << j << ": " << p );
//
// 1. Calculate distance and bearing from the center of
// the feature
//
// given alt, lat1, lon1, lat2, lon2, calculate starting
// and ending az1, az2 and distance (s). Lat, lon, and
// azimuth are in degrees. distance in meters
double az1, az2, dist;
geo_inverse_wgs_84( 0, ref.y(), ref.x(), p.y(), p.x(),
&az1, &az2, &dist );
SG_LOG(SG_GENERAL, SG_DEBUG, "basic course from ref = " << az2);
//
// 2. Rotate this back into a coordinate system where Y
// runs the length of the runway and X runs crossways.
//
double course = az2 - heading;
while ( course < -360 ) { course += 360; }
while ( course > 360 ) { course -= 360; }
SG_LOG( SG_GENERAL, SG_DEBUG,
" course = " << course << " dist = " << dist );
//
// 3. Convert from polar to cartesian coordinates
//
x = sin( course * SGD_DEGREES_TO_RADIANS ) * dist;
y = cos( course * SGD_DEGREES_TO_RADIANS ) * dist;
SG_LOG(SG_GENERAL, SG_DEBUG, " x = " << x << " y = " << y);
//
// 4. Map x, y point into texture coordinates
//
double tmp;
tmp = x / width;
tx = tmp * (maxu - minu) + minu;
if ( tx < -1.0 ) { tx = -1.0; }
if ( tx > 1.0 ) { tx = 1.0; }
SG_LOG(SG_GENERAL, SG_DEBUG, " (" << tx << ")");
ty = (y/length) + minv;
SG_LOG(SG_GENERAL, SG_DEBUG, " (" << ty << ")");
t = Point3D( tx, ty, 0 );
SG_LOG(SG_GENERAL, SG_DEBUG, " (" << tx << ", " << ty << ")");
result.add_node( i, t );
}
}
return result;
}
// collect custom objects and move to scenery area
void TGConstruct::AddCustomObjects( void ) {
// Create/open the output .stg file for writing
SGPath dest_d(get_output_base().c_str());
dest_d.append(bucket.gen_base_path().c_str());
string dest_dir = dest_d.str_native();
SGPath dest_i(dest_d);
dest_i.append(bucket.gen_index_str());
dest_i.concat(".stg");
string dest_ind = dest_i.str_native();
FILE *fp;
if ( (fp = fopen( dest_ind.c_str(), "w" )) == NULL ) {
SG_LOG( SG_GENERAL, SG_ALERT, "ERROR: opening " << dest_ind << " for writing!" );
exit(-1);
}
// Start with the default custom object which is the base terrain
fprintf(fp, "OBJECT_BASE %s.btg\n", bucket.gen_index_str().c_str());
char line[2048]; // big enough?
char token[256];
char name[256];
for ( int i = 0; i < (int)load_dirs.size(); ++i ) {
SGPath base(get_work_base().c_str());
base.append(load_dirs[i]);
base.append( bucket.gen_base_path() );
SGPath index(base);
index.append( bucket.gen_index_str() );
index.concat(".ind");
string index_file = index.str_native();
sg_gzifstream in( index_file );
if ( ! in.is_open() ) {
//No custom objects
} else {
while ( ! in.eof() ) {
SG_LOG( SG_GENERAL, SG_INFO, "Collecting custom objects from " << index_file );
in.getline(line, 2048);
SG_LOG( SG_GENERAL, SG_INFO, "line = " << line );
int result = sscanf( line, "%s %s", token, name );
SG_LOG( SG_GENERAL, SG_INFO, "scanf scanned " << result << " tokens" );
if ( result > 0 ) {
SG_LOG( SG_GENERAL, SG_INFO, "token = " << token << " name = " << name );
if ( strcmp( token, "OBJECT" ) == 0 ) {
base.append(name);
base.concat(".gz");
string basecom = base.str_native();
#ifdef _MSC_VER
string command = "copy " + basecom + " " + dest_dir;
#else
string command = "cp " + basecom + " " + dest_dir;
#endif
SG_LOG( SG_GENERAL, SG_INFO, "running " << command );
system( command.c_str() );
fprintf(fp, "OBJECT %s\n", name);
} else {
fprintf(fp, "%s\n", line);
}
}
}
}
}
fclose(fp);
}
// Attempt to merge slivers into a list of polygons.
//
// For each sliver contour, see if a union with another polygon yields
// a polygon with no increased contours (i.e. the sliver is adjacent
// and can be merged.) If so, replace the clipped polygon with the
// new polygon that has the sliver merged in.
void TGConstruct::merge_slivers( TGLandclass& clipped, poly_list& slivers_list ) {
TGPolygon poly, result, slivers, sliver;
point_list contour;
int original_contours, result_contours;
bool done;
int area, shape, segment, i, j;
int merged = 0;
int total = 0;
for ( i = 0; i < (int)slivers_list.size(); i++ ) {
slivers = slivers_list[i];
for ( j = 0; j < slivers.contours(); ++j ) {
// make the sliver polygon
contour = slivers.get_contour( j );
total++;
sliver.erase();
sliver.add_contour( contour, 0 );
done = false;
for ( area = 0; area < TG_MAX_AREA_TYPES && !done; ++area ) {
if ( is_hole_area( area ) ) {
// don't merge a non-hole sliver in with a hole
continue;
}
for ( shape = 0; shape < (int)clipped.area_size(area) && !done; ++shape ) {
unsigned int shape_id = clipped.get_shape( area, shape ).id;
for ( segment = 0; segment < (int)clipped.shape_size(area, shape) && !done; ++segment ) {
poly = clipped.get_poly( area, shape, segment );
original_contours = poly.contours();
result = tgPolygonUnionClipper( poly, sliver );
result_contours = result.contours();
if ( original_contours == result_contours ) {
SG_LOG(SG_GENERAL, SG_INFO, "MERGED SLIVER " << i << ", " << j << " into area " << get_area_name( (AreaType)area ) << " id: " << shape_id << " segment: " << segment );
clipped.set_poly( area, shape, segment, result );
merged++;
/* add the sliver to the clip_mask, too */
TGPolygon mask = clipped.get_mask( area, shape );
result = tgPolygonUnionClipper( mask, sliver );
clipped.set_mask( area, shape, result );
if ( IsDebugShape( shape_id ) ) {
WriteDebugShape( "with_slivers", clipped.get_shape( area, shape ) );
}
done = true;
}
}
}
}
}
}
slivers_list.clear();
SG_LOG(SG_GENERAL, SG_INFO, " UNMERGED SLIVERS: " << total - merged );
}
bool TGConstruct::ClipLandclassPolys( void ) {
TGPolygon clipped, tmp;
TGPolygon remains;
TGPolygon safety_base;
poly_list slivers;
int i, j;
Point3D p;
point2d min, max;
#if !USE_ACCUMULATOR
TGPolygon accum;
#endif
// Get clip bounds
min.x = bucket.get_center_lon() - 0.5 * bucket.get_width();
min.y = bucket.get_center_lat() - 0.5 * bucket.get_height();
max.x = bucket.get_center_lon() + 0.5 * bucket.get_width();
max.y = bucket.get_center_lat() + 0.5 * bucket.get_height();
#if USE_ACCUMULATOR
tgPolygonInitClipperAccumulator();
#else
accum.erase();
#endif
// set up clipping tile : and remember to add the nodes!
safety_base.erase();
p = Point3D(min.x, min.y, -9999.0);
safety_base.add_node( 0, p );
nodes.unique_add( p );
p = Point3D(max.x, min.y, -9999.0);
safety_base.add_node( 0, p );
nodes.unique_add( p );
p = Point3D(max.x, max.y, -9999.0);
safety_base.add_node( 0, p );
nodes.unique_add( p );
p = Point3D(min.x, max.y, -9999.0);
safety_base.add_node( 0, p );
nodes.unique_add( p );
// set up land mask, we clip most things to this since it is our
// best representation of land vs. ocean. If we have other less
// accurate data that spills out into the ocean, we want to just
// clip it.
// also set up a mask for all water and islands
TGPolygon land_mask, water_mask, island_mask;
land_mask.erase();
water_mask.erase();
island_mask.erase();
for ( i = 0; i < TG_MAX_AREA_TYPES; i++ ) {
if ( is_landmass_area( i ) && !ignoreLandmass ) {
for ( unsigned int j = 0; j < polys_in.area_size(i); ++j ) {
land_mask = tgPolygonUnionClipper( land_mask, polys_in.get_mask(i, j) );
}
} else if ( is_water_area( i ) ) {
for (unsigned int j = 0; j < polys_in.area_size(i); j++) {
water_mask = tgPolygonUnionClipper( water_mask, polys_in.get_mask(i, j) );
}
} else if ( is_island_area( i ) ) {
for (unsigned int j = 0; j < polys_in.area_size(i); j++) {
island_mask = tgPolygonUnionClipper( island_mask, polys_in.get_mask(i, j) );
}
}
}
// Dump the masks
if ( debug_all || debug_shapes.size() ) {
WriteDebugPoly( "land_mask", "", land_mask );
WriteDebugPoly( "water_mask", "", water_mask );
WriteDebugPoly( "island_mask", "", island_mask );
}
// process polygons in priority order
for ( i = 0; i < TG_MAX_AREA_TYPES; ++i ) {
for( j = 0; j < (int)polys_in.area_size(i); ++j ) {
TGPolygon current = polys_in.get_mask(i, j);
SG_LOG( SG_CLIPPER, SG_INFO, "Clipping " << get_area_name( (AreaType)i ) << ":" << j+1 << " of " << polys_in.area_size(i) );
tmp = current;
// if not a hole, clip the area to the land_mask
if ( !ignoreLandmass && !is_hole_area( i ) ) {
tmp = tgPolygonIntClipper( tmp, land_mask );
}
// if a water area, cut out potential islands
if ( is_water_area( i ) ) {
// clip against island mask
tmp = tgPolygonDiffClipper( tmp, island_mask );
}
if ( IsDebugShape( polys_in.get_shape( i, j ).id ) ) {
char name[32];
sprintf(name, "shape %d,%d", i,j);
WriteDebugPoly( "pre-clip", name, tmp );
}
#if USE_ACCUMULATOR
clipped = tgPolygonDiffClipperWithAccumulator( tmp );
#else
clipped = tgPolygonDiffClipper( tmp, accum );
#endif
// only add to output list if the clip left us with a polygon
if ( clipped.contours() > 0 ) {
#if FIND_SLIVERS
// move slivers from clipped polygon to slivers polygon
tgPolygonFindSlivers( clipped, slivers );
#endif
// add the sliverless result polygon to the clipped polys list
if ( clipped.contours() > 0 ) {
TGShape shape;
// copy all of the superpolys and texparams
shape.SetMask( clipped );
shape.textured = polys_in.get_textured( i, j );
shape.id = polys_in.get_shape( i, j ).id;
shape.area= polys_in.get_shape( i, j ).area;
shape.sps = polys_in.get_shape( i, j ).sps;
shape.tps = polys_in.get_shape( i, j ).tps;
// shape.sps.push_back( sp );
polys_clipped.add_shape( i, shape );
if ( IsDebugShape( shape.id ) ) {
WriteDebugShape( "clipped", shape );
}
}
}
#if USE_ACCUMULATOR
tgPolygonAddToClipperAccumulator( tmp );
#else
accum = tgPolygonUnionClipper( tmp, accum );
#endif
}
}
if ( debug_all || debug_shapes.size() ) {
// Dump the sliver list
WriteDebugPolys( "poly_slivers", slivers );
}
#if FIND_SLIVERS
// Now, merge any slivers with clipped polys
merge_slivers(polys_clipped, slivers);
#endif
slivers.clear();
// finally, what ever is left over goes to ocean
#if USE_ACCUMULATOR
remains = tgPolygonDiffClipperWithAccumulator( safety_base );
#else
remains = tgPolygonDiffClipper( safety_base, accum );
#endif
if ( remains.contours() > 0 ) {
// cout << "remains contours = " << remains.contours() << endl;
// move slivers from remains polygon to slivers polygon
#if FIND_SLIVERS
tgPolygonFindSlivers( remains, slivers );
#endif
// cout << " After sliver move:" << endl;
// cout << " remains = " << remains.contours() << endl;
// cout << " slivers = " << slivers.contours() << endl;
#if FIND_SLIVERS
// merge any slivers with previously clipped
// neighboring polygons
if ( slivers.size() > 0 ) {
if ( debug_all || debug_shapes.size() ) {
// Dump the sliver list
WriteDebugPolys( "remains_slivers", slivers );
}
merge_slivers(polys_clipped, slivers);
}
#endif
if ( remains.contours() > 0 ) {
TGSuperPoly sp;
TGShape shape;
string material = get_area_name(get_sliver_target_area_type());
sp.set_material( material );
sp.set_poly( remains );
shape.SetMask( remains );
shape.sps.push_back( sp );
polys_clipped.add_shape( (int)get_sliver_target_area_type(), shape );
}
}
#if USE_ACCUMULATOR
tgPolygonFreeClipperAccumulator();
#endif
// Once clipping is complete, intersect the individual segments with their clip masks
for (unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++) {
for (unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Seperating segments from clip mask for " << get_area_name( (AreaType)area ) << ":" << shape+1 << " of " << polys_clipped.area_size(area) );
polys_clipped.get_shape(area, shape).IntersectPolys();
}
}
// Now make sure any newly added intersection nodes are added to the tgnodes
for (unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++) {
for (unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
for (unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++) {
TGPolygon poly = polys_clipped.get_poly( area, shape, segment );
SG_LOG( SG_CLIPPER, SG_INFO, "Collecting nodes for " << get_area_name( (AreaType)area ) << ":" << shape+1 << "-" << segment << " of " << polys_clipped.area_size(area) );
for (int con=0; con < poly.contours(); con++) {
for (int node = 0; node < poly.contour_size( con ); node++) {
// ensure we have all nodes...
nodes.unique_add( poly.get_pt( con, node ) );
}
}
}
}
}
return true;
}
bool TGNodesSortByLon( const TGNode& n1, const TGNode& n2 )
{
return ( n1.GetPosition().x() < n2.GetPosition().x() );
}
// TODO : Add to TGNodes class
#if 0
static void dump_lat_nodes( TGConstruct& c, double lat ) {
node_list all_nodes = c.get_nodes()->get_node_list();
node_list sorted_nodes;
for (unsigned int i=0; i<all_nodes.size(); i++) {
if ( fabs( all_nodes[i].GetPosition().y() - lat ) < 0.0000001 ) {
sorted_nodes.push_back( all_nodes[i] );
}
}
sort( sorted_nodes.begin(), sorted_nodes.end(), TGNodesSortByLon );
for (unsigned int i=0; i<sorted_nodes.size(); i++) {
string fixed;
if ( sorted_nodes[i].GetFixedPosition() ) {
fixed = " z is fixed elevation ";
} else {
fixed = " z is interpolated elevation ";
}
SG_LOG(SG_GENERAL, SG_ALERT, "Point[" << i << "] is " << sorted_nodes[i].GetPosition() << fixed );
}
}
#endif
// This function populates the Superpoly tri_idx polygon.
// This polygon is a mirror of tris, except the verticies are
// indexes into the node array (cast as unsigned long)
void TGConstruct::LookupNodesPerVertex( void )
{
SG_LOG(SG_GENERAL, SG_ALERT, "LookupNodexPerVertex");
// for each node, traverse all the triangles - and create face lists
for ( unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++ ) {
for( unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon tris = polys_clipped.get_tris( area, shape, segment );
TGPolyNodes tri_nodes;
int idx;
for (int tri=0; tri < tris.contours(); tri++) {
for (int vertex = 0; vertex < tris.contour_size(tri); vertex++) {
idx = nodes.find( tris.get_pt( tri, vertex ) );
if (idx >= 0) {
tri_nodes.add_node( tri, idx );
} else {
exit(0);
}
}
}
polys_clipped.set_tri_idxs(area, shape, segment, tri_nodes);
}
}
}
}
void TGConstruct::LookupFacesPerNode( void )
{
SG_LOG(SG_GENERAL, SG_ALERT, "LookupFacesPerNode");
// Add each face that includes a node to the node's face list
for ( unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++ ) {
for( unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon tris = polys_clipped.get_tris(area, shape, segment);
for (int tri=0; tri < tris.contours(); tri++) {
for (int sub = 0; sub < tris.contour_size(tri); sub++) {
int n = nodes.find( tris.get_pt( tri, sub ) );
nodes.AddFace( n, area, shape, segment, tri );
}
}
}
}
}
}
double TGConstruct::calc_tri_area( int_list& triangle_nodes ) {
Point3D p1 = nodes.get_node( triangle_nodes[0] ).GetPosition();
Point3D p2 = nodes.get_node( triangle_nodes[1] ).GetPosition();
Point3D p3 = nodes.get_node( triangle_nodes[2] ).GetPosition();
return triangle_area( p1, p2, p3 );
}
void TGConstruct::calc_normals( point_list& wgs84_nodes, TGSuperPoly& sp ) {
// for each face in the superpoly, calculate a face normal
SGVec3d v1, v2, normal;
TGPolyNodes tri_nodes = sp.get_tri_idxs();
int_list face_nodes;
double_list face_areas;
point_list face_normals;
double area;
face_normals.clear();
face_areas.clear();
for (int i=0; i<tri_nodes.contours(); i++) {
face_nodes = tri_nodes.get_contour(i);
Point3D p1 = wgs84_nodes[ face_nodes[0] ];
Point3D p2 = wgs84_nodes[ face_nodes[1] ];
Point3D p3 = wgs84_nodes[ face_nodes[2] ];
area = calc_tri_area( face_nodes );
// do some sanity checking. With the introduction of landuse
// areas, we can get some long skinny triangles that blow up our
// "normal" calculations here. Let's check for really small
// triangle areas and check if one dimension of the triangle
// coordinates is nearly coincident. If so, assign the "default"
// normal of straight up.
bool degenerate = false;
const double area_eps = 1.0e-12;
if ( area < area_eps ) {
degenerate = true;
}
if ( fabs(p1.x() - p2.x()) < SG_EPSILON && fabs(p1.x() - p3.x()) < SG_EPSILON ) {
degenerate = true;
}
if ( fabs(p1.y() - p2.y()) < SG_EPSILON && fabs(p1.y() - p3.y()) < SG_EPSILON ) {
degenerate = true;
}
if ( fabs(p1.z() - p2.z()) < SG_EPSILON && fabs(p1.z() - p3.z()) < SG_EPSILON ) {
degenerate = true;
}
if ( degenerate ) {
normal = normalize(SGVec3d(p1.x(), p1.y(), p1.z()));
} else {
v1[0] = p2.x() - p1.x();
v1[1] = p2.y() - p1.y();
v1[2] = p2.z() - p1.z();
v2[0] = p3.x() - p1.x();
v2[1] = p3.y() - p1.y();
v2[2] = p3.z() - p1.z();
normal = normalize(cross(v1, v2));
}
face_normals.push_back( Point3D::fromSGVec3( normal ) );
face_areas.push_back( area );
}
sp.set_face_normals( face_normals );
sp.set_face_areas( face_areas );
}
void TGConstruct::CalcFaceNormals( void )
{
// traverse the superpols, and calc normals for each tri within
point_list wgs84_nodes = nodes.get_wgs84_nodes_as_Point3d();
for (unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++) {
for (unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Calculating face normals for " << get_area_name( (AreaType)area ) << ":" << shape+1 << "-" << segment << " of " << polys_in.area_size(area) );
calc_normals( wgs84_nodes, polys_clipped.get_superpoly( area, shape, segment ) );
}
}
}
}
void TGConstruct::CalcPointNormals( void )
{
// traverse triangle structure building the face normal table
SG_LOG(SG_GENERAL, SG_ALERT, "Calculating point normals: 0%");
Point3D normal;
point_list wgs84_nodes = nodes.get_wgs84_nodes_as_Point3d();
unsigned int ten_percent = nodes.size() / 10;
unsigned int cur_percent = 10;
for ( unsigned int i = 0; i<nodes.size(); i++ ) {
TGNode node = nodes.get_node( i );
TGFaceList faces = node.GetFaces();
double total_area = 0.0;
Point3D average( 0.0 );
if ( i == ten_percent ) {
SG_LOG(SG_GENERAL, SG_ALERT, "Calculating point normals: " << cur_percent << "%" );
ten_percent += nodes.size() / 10;
cur_percent += 10;
}
// for each triangle that shares this node
for ( unsigned int j = 0; j < faces.size(); ++j ) {
unsigned int at = faces[j].area;
unsigned int shape = faces[j].shape;
unsigned int segment = faces[j].seg;
unsigned int tri = faces[j].tri;
int_list face_nodes;
double face_area;
normal = polys_clipped.get_face_normal( at, shape, segment, tri );
face_nodes = polys_clipped.get_tri_idxs( at, shape, segment ).get_contour( tri ) ;
face_area = polys_clipped.get_face_area( at, shape, segment, tri );
normal *= face_area; // scale normal weight relative to area
total_area += face_area;
average += normal;
}
average /= total_area;
nodes.SetNormal( i, average );
}
}
void TGConstruct::LoadSharedEdgeData( void )
{
match.load_neighbor_shared( bucket, work_base );
if ( useOwnSharedEdges ) {
match.load_missing_shared( bucket, work_base );
}
match.add_shared_nodes( this );
}
void TGConstruct::SaveSharedEdgeData( void )
{
match.split_tile( bucket, this );
SG_LOG(SG_GENERAL, SG_ALERT, "Tile Split");
if ( writeSharedEdges ) {
SG_LOG(SG_GENERAL, SG_ALERT, "write shared edges");
match.write_shared( bucket, work_base );
}
}
void TGConstruct::TesselatePolys( void )
{
// tesselate the polygons and prepair them for final output
point_list poly_extra;
Point3D min, max;
for (unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++) {
for (unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
unsigned int id = polys_clipped.get_shape( area, shape ).id;
if ( IsDebugShape( id ) ) {
WriteDebugShape( "preteselate", polys_clipped.get_shape(area, shape) );
}
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon poly = polys_clipped.get_poly(area, shape, segment);
poly.get_bounding_box(min, max);
poly_extra = nodes.get_geod_inside( min, max );
SG_LOG( SG_CLIPPER, SG_INFO, "Tesselating " << get_area_name( (AreaType)area ) << "(" << area << "): " <<
shape+1 << "-" << segment << " of " << (int)polys_clipped.area_size(area) <<
": id = " << id );
// TGPolygon tri = polygon_tesselate_alt_with_extra( poly, poly_extra, false );
TGPolygon tri = polygon_tesselate_alt_with_extra_cgal( poly, poly_extra, false );
// ensure all added nodes are accounted for
for (int k=0; k< tri.contours(); k++) {
for (int l = 0; l < tri.contour_size(k); l++) {
// ensure we have all nodes...
nodes.unique_add( tri.get_pt( k, l ) );
}
}
// Save the triangulation
polys_clipped.set_tris( area, shape, segment, tri );
}
}
}
}
void TGConstruct::WriteBtgFile( void )
{
TGTriNodes normals, texcoords;
normals.clear();
texcoords.clear();
group_list pts_v; pts_v.clear();
group_list pts_n; pts_n.clear();
string_list pt_materials; pt_materials.clear();
group_list tris_v; tris_v.clear();
group_list tris_n; tris_n.clear();
group_list tris_tc; tris_tc.clear();
string_list tri_materials; tri_materials.clear();
group_list strips_v; strips_v.clear();
group_list strips_n; strips_n.clear();
group_list strips_tc; strips_tc.clear();
string_list strip_materials; strip_materials.clear();
int index;
int_list pt_v, tri_v, strip_v;
int_list pt_n, tri_n, strip_n;
int_list tri_tc, strip_tc;
for (unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++) {
// only tesselate non holes
if ( !is_hole_area( area ) ) {
for (unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
SG_LOG( SG_CLIPPER, SG_INFO, "Ouput nodes for " << get_area_name( (AreaType)area ) << ":" <<
shape+1 << "-" << segment << " of " << polys_clipped.area_size(area) );
TGPolyNodes tri_nodes = polys_clipped.get_tri_idxs(area, shape, segment);
TGPolygon tri_txs = polys_clipped.get_texcoords(area, shape, segment);
string material = polys_clipped.get_material(area, shape, segment);
for (int k = 0; k < tri_nodes.contours(); ++k) {
tri_v.clear();
tri_n.clear();
tri_tc.clear();
for (int l = 0; l < tri_nodes.contour_size(k); ++l) {
index = tri_nodes.get_pt( k, l );
tri_v.push_back( index );
// add the node's normal
index = normals.unique_add( nodes.GetNormal( index ) );
tri_n.push_back( index );
Point3D tc = tri_txs.get_pt( k, l );
index = texcoords.unique_add( tc );
tri_tc.push_back( index );
}
tris_v.push_back( tri_v );
tris_n.push_back( tri_n );
tris_tc.push_back( tri_tc );
tri_materials.push_back( material );
}
}
}
}
}
std::vector< SGVec3d > wgs84_nodes = nodes.get_wgs84_nodes_as_SGVec3d();
SGSphered d;
for (int i = 0; i < (int)wgs84_nodes.size(); ++i)
{
d.expandBy(wgs84_nodes[ i ]);
}
SGVec3d gbs_center = d.getCenter();
double gbs_radius = d.getRadius();
SG_LOG(SG_GENERAL, SG_DEBUG, "gbs center = " << gbs_center);
SG_LOG(SG_GENERAL, SG_DEBUG, "Done with wgs84 node mapping");
SG_LOG(SG_GENERAL, SG_DEBUG, " center = " << gbs_center << " radius = " << gbs_radius );
// null structures
group_list fans_v; fans_v.clear();
group_list fans_n; fans_n.clear();
group_list fans_tc; fans_tc.clear();
string_list fan_materials; fan_materials.clear();
string base = get_output_base();
string binname = bucket.gen_index_str();
binname += ".btg";
string txtname = bucket.gen_index_str();
txtname += ".txt";
std::vector< SGVec3f > normals_3f;
for (int i=0; i < (int)normals.get_node_list().size(); i++ )
{
Point3D node = normals.get_node_list()[i];
normals_3f.push_back( node.toSGVec3f() );
}
std::vector< SGVec2f > texcoords_2f;
for (int i=0; i < (int)texcoords.get_node_list().size(); i++ )
{
Point3D node = texcoords.get_node_list()[i];
texcoords_2f.push_back( node.toSGVec2f() );
}
SGBinObject obj;
obj.set_gbs_center( gbs_center );
obj.set_gbs_radius( gbs_radius );
obj.set_wgs84_nodes( wgs84_nodes );
obj.set_normals( normals_3f );
obj.set_texcoords( texcoords_2f );
obj.set_pts_v( pts_v );
obj.set_pts_n( pts_n );
obj.set_pt_materials( pt_materials );
obj.set_tris_v( tris_v );
obj.set_tris_n( tris_n );
obj.set_tris_tc( tris_tc );
obj.set_tri_materials( tri_materials );
obj.set_strips_v( strips_v );
obj.set_strips_n( strips_n );
obj.set_strips_tc( strips_tc );
obj.set_strip_materials( strip_materials );
obj.set_fans_v( fans_v );
obj.set_fans_n( fans_n );
obj.set_fans_tc( fans_tc );
obj.set_fan_materials( fan_materials );
bool result;
result = obj.write_bin( base, binname, bucket );
if ( !result )
{
throw sg_exception("error writing file. :-(");
}
result = obj.write_ascii( base, txtname, bucket );
if ( !result )
{
throw sg_exception("error writing file. :-(");
}
}
void TGConstruct::CleanClippedPolys() {
// Clean the polys
for ( unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++ ) {
for( unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
unsigned int id = polys_clipped.get_shape( area, shape ).id;
// step 1 : snap
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon poly = polys_clipped.get_poly(area, shape, segment);
poly = snap(poly, gSnap);
polys_clipped.set_poly( area, shape, segment, poly );
}
if ( IsDebugShape( id ) ) {
WriteDebugShape( "snapped", polys_clipped.get_shape( area, shape ) );
}
// step 2 : remove_dups
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon poly = polys_clipped.get_poly(area, shape, segment);
poly = remove_dups( poly );
polys_clipped.set_poly( area, shape, segment, poly );
}
if ( IsDebugShape( id ) ) {
WriteDebugShape( "rem dupes", polys_clipped.get_shape( area, shape ) );
}
// step 3 : remove_bad_contours
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon poly = polys_clipped.get_poly(area, shape, segment);
poly = remove_bad_contours( poly );
polys_clipped.set_poly( area, shape, segment, poly );
}
if ( IsDebugShape( id ) ) {
WriteDebugShape( "rem bad contours", polys_clipped.get_shape( area, shape ) );
}
// todo - add up all segments in a shape for printout
#if 0
after = poly.total_size();
if (before != after) {
SG_LOG( SG_CLIPPER, SG_INFO, "Cleanined poly " << get_area_name( (AreaType)area ) <<
":" << shape+1 << "-" << segment << " of " << polys_clipped.area_size(area) << " before: " << before << " after: " << after );
}
#endif
}
}
}
void TGConstruct::CalcTextureCoordinates( void )
{
for ( unsigned int area = 0; area < TG_MAX_AREA_TYPES; area++ ) {
for( unsigned int shape = 0; shape < polys_clipped.area_size(area); shape++ ) {
for ( unsigned int segment = 0; segment < polys_clipped.shape_size(area, shape); segment++ ) {
TGPolygon poly = polys_clipped.get_poly(area, shape, segment);
SG_LOG( SG_CLIPPER, SG_INFO, "Texturing " << get_area_name( (AreaType)area ) << "(" << area << "): " <<
shape+1 << "-" << segment << " of " << polys_clipped.area_size(area) );
TGPolygon tri = polys_clipped.get_tris( area, shape, segment );
TGPolygon tc;
if ( polys_clipped.get_textured( area, shape ) ) {
SG_LOG(SG_GENERAL, SG_DEBUG, "USE TEXTURE PARAMS for tex coord calculations" );
tc = linear_tex_coords( tri, polys_clipped.get_texparams(area, shape, segment) );
} else {
SG_LOG(SG_GENERAL, SG_DEBUG, "USE SIMGEAR for tex coord calculations" );
tc = area_tex_coords( tri );
}
polys_clipped.set_texcoords( area, shape, segment, tc );
}
}
}
}
// master construction routine
// TODO : Split each step into its own function, and move
// into seperate files by major functionality
// loading, clipping, tesselating, normals, and output
// Also, we are still calculating some thing more than one
// (like face area - need to move this into superpoly )
void TGConstruct::ConstructBucketStage1() {
SG_LOG(SG_GENERAL, SG_ALERT, "\nConstructing tile ID " << bucket.gen_index_str() << " in " << bucket.gen_base_path() );
/* If we have some debug IDs, create a datasource */
if ( debug_shapes.size() || debug_all ) {
sprintf(ds_name, "%s/constructdbg_%s", debug_path.c_str(), bucket.gen_index_str().c_str() );
SG_LOG(SG_GENERAL, SG_ALERT, "Debug_string: " << ds_name );
}
// STEP 1)
// Load grid of elevation data (Array)
LoadElevationArray();
// STEP 2)
// Clip 2D polygons against one another
if ( LoadLandclassPolys() == 0 ) {
// don't build the tile if there is no 2d data ... it *must*
// be ocean and the sim can build the tile on the fly.
return;
}
// STEP 3)
// Load the land use polygons if the --cover option was specified
if ( get_cover().size() > 0 ) {
load_landcover();
}
// STEP 4)
// Clip the Landclass polygons
ClipLandclassPolys();
// STEP 5)
// Clean the polys - after this, we shouldn't change their shape (other than slightly for
// fix T-Junctions - as This is the end of the first pass for multicore design
CleanClippedPolys();
// END OF FIRST PASS : SAVE THE TILE DATA
// STEP 5)
// Merge in Shared data (just add the nodes to the nodelist)
// When this step is complete, some nodes will have normals (from shared tiles)
// and some will not
// Load Shared Edge Data X,Y coords only
LoadSharedEdgeData();
// STEP 6)
// Fix T-Junctions by finding nodes that lie close to polygon edges, and
// inserting them into the edge
FixTJunctions();
// TODO : Needs to be part of clipping
// just before union : If we need to clean again after fixing tjunctions, make
// sure we don't alter the shape
// CleanClippedPolys();
// STEP 7)
// Generate triangles - we can't generate the node-face lookup table
// until all polys are tesselated, as extra nodes can still be generated
TesselatePolys();
// STEP 8)
// Generate triangle vertex coordinates to node index lists
// NOTE: After this point, no new nodes can be added
LookupNodesPerVertex();
// STEP 9)
// Interpolate elevations, and flatten stuff
CalcElevations();
// STEP 10)
// Generate face_connected list - shared data contains faces, too - save them somehow
LookupFacesPerNode();
// END OF SECOND PASS : SAVE THE TILE DATA
// load shared edge data (with elevations, and face connected list)
// LoadSharedEdgeDataWithElevation();
// STEP 11)
// Calculate Face Normals
CalcFaceNormals();
// STEP 12)
// Calculate Point Normals
CalcPointNormals();
#if 0
if ( c.get_cover().size() > 0 ) {
// Now for all the remaining "default" land cover polygons, assign
// each one it's proper type from the land use/land cover
// database.
fix_land_cover_assignments( c );
}
#endif
// STEP 13)
// Calculate Texture Coordinates
CalcTextureCoordinates();
// STEP 14)
// Write out the shared edge data
SaveSharedEdgeData();
// STEP 15)
// Generate the btg file
WriteBtgFile();
// STEP 16)
// Write Custom objects to .stg file
AddCustomObjects();
}