1
0
Fork 0
flightgear/src/Main/viewer.cxx
david 0944ab91c2 Patch from Melchior Franz:
The matrix doesn't define some cells, which are actually used
in the multiplication. That makes the result unpredictable.
I have no idea if 0.0 is the correct value for these, but
garbage is hardly the correct value either. Should some of them
be set to 1.0?
2002-03-27 15:53:15 +00:00

761 lines
20 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// viewer.cxx -- class for managing a viewer in the flightgear world.
//
// Written by Curtis Olson, started August 1997.
// overhaul started October 2000.
// partially rewritten by Jim Wilson jim@kelcomaine.com using interface
// by David Megginson March 2002
//
// Copyright (C) 1997 - 2000 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <simgear/compiler.h>
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/debug/logstream.hxx>
#include <simgear/constants.h>
#include <simgear/math/point3d.hxx>
#include <simgear/math/polar3d.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <Scenery/scenery.hxx>
/* from lookat */
#include <simgear/math/vector.hxx>
#include "globals.hxx"
/* end from lookat */
#include "viewer.hxx"
//////////////////////////////////////////////////////////////////
// Norman's Optimized matrix rotators! //
//////////////////////////////////////////////////////////////////
static void fgMakeLOCAL( sgMat4 dst, const double Theta,
const double Phi, const double Psi)
{
SGfloat cosTheta = (SGfloat) cos(Theta);
SGfloat sinTheta = (SGfloat) sin(Theta);
SGfloat cosPhi = (SGfloat) cos(Phi);
SGfloat sinPhi = (SGfloat) sin(Phi);
SGfloat sinPsi = (SGfloat) sin(Psi) ;
SGfloat cosPsi = (SGfloat) cos(Psi) ;
dst[0][0] = cosPhi * cosTheta;
dst[0][1] = sinPhi * cosPsi + cosPhi * -sinTheta * -sinPsi;
dst[0][2] = sinPhi * sinPsi + cosPhi * -sinTheta * cosPsi;
dst[0][3] = SG_ZERO;
dst[1][0] = -sinPhi * cosTheta;
dst[1][1] = cosPhi * cosPsi + -sinPhi * -sinTheta * -sinPsi;
dst[1][2] = cosPhi * sinPsi + -sinPhi * -sinTheta * cosPsi;
dst[1][3] = SG_ZERO ;
dst[2][0] = sinTheta;
dst[2][1] = cosTheta * -sinPsi;
dst[2][2] = cosTheta * cosPsi;
dst[2][3] = SG_ZERO;
dst[3][0] = SG_ZERO;
dst[3][1] = SG_ZERO;
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE ;
}
// Since these are pure rotation matrices we can save some bookwork
// by considering them to be 3x3 until the very end -- NHV
static void MakeVIEW_OFFSET( sgMat4 dst,
const float angle1, const sgVec3 axis1,
const float angle2, const sgVec3 axis2 )
{
// make rotmatrix1 from angle and axis
float s = (float) sin ( angle1 ) ;
float c = (float) cos ( angle1 ) ;
float t = SG_ONE - c ;
sgMat3 mat1;
float tmp = t * axis1[0];
mat1[0][0] = tmp * axis1[0] + c ;
mat1[0][1] = tmp * axis1[1] + s * axis1[2] ;
mat1[0][2] = tmp * axis1[2] - s * axis1[1] ;
tmp = t * axis1[1];
mat1[1][0] = tmp * axis1[0] - s * axis1[2] ;
mat1[1][1] = tmp * axis1[1] + c ;
mat1[1][2] = tmp * axis1[2] + s * axis1[0] ;
tmp = t * axis1[2];
mat1[2][0] = tmp * axis1[0] + s * axis1[1] ;
mat1[2][1] = tmp * axis1[1] - s * axis1[0] ;
mat1[2][2] = tmp * axis1[2] + c ;
// make rotmatrix2 from angle and axis
s = (float) sin ( angle2 ) ;
c = (float) cos ( angle2 ) ;
t = SG_ONE - c ;
sgMat3 mat2;
tmp = t * axis2[0];
mat2[0][0] = tmp * axis2[0] + c ;
mat2[0][1] = tmp * axis2[1] + s * axis2[2] ;
mat2[0][2] = tmp * axis2[2] - s * axis2[1] ;
tmp = t * axis2[1];
mat2[1][0] = tmp * axis2[0] - s * axis2[2] ;
mat2[1][1] = tmp * axis2[1] + c ;
mat2[1][2] = tmp * axis2[2] + s * axis2[0] ;
tmp = t * axis2[2];
mat2[2][0] = tmp * axis2[0] + s * axis2[1] ;
mat2[2][1] = tmp * axis2[1] - s * axis2[0] ;
mat2[2][2] = tmp * axis2[2] + c ;
// multiply matrices
for ( int j = 0 ; j < 3 ; j++ ) {
dst[0][j] = mat2[0][0] * mat1[0][j] +
mat2[0][1] * mat1[1][j] +
mat2[0][2] * mat1[2][j];
dst[1][j] = mat2[1][0] * mat1[0][j] +
mat2[1][1] * mat1[1][j] +
mat2[1][2] * mat1[2][j];
dst[2][j] = mat2[2][0] * mat1[0][j] +
mat2[2][1] * mat1[1][j] +
mat2[2][2] * mat1[2][j];
}
// fill in 4x4 matrix elements
dst[0][3] = SG_ZERO;
dst[1][3] = SG_ZERO;
dst[2][3] = SG_ZERO;
dst[3][0] = SG_ZERO;
dst[3][1] = SG_ZERO;
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE;
}
// Taking advantage of the 3x3 nature of this -- NHV
inline static void MakeWithWorldUp( sgMat4 dst, const sgMat4 UP, const sgMat4 LOCAL )
{
sgMat4 tmp;
float a = UP[0][0];
float b = UP[1][0];
float c = UP[2][0];
tmp[0][0] = a*LOCAL[0][0] + b*LOCAL[0][1] + c*LOCAL[0][2] ;
tmp[1][0] = a*LOCAL[1][0] + b*LOCAL[1][1] + c*LOCAL[1][2] ;
tmp[2][0] = a*LOCAL[2][0] + b*LOCAL[2][1] + c*LOCAL[2][2] ;
tmp[3][0] = SG_ZERO ;
a = UP[0][1];
b = UP[1][1];
c = UP[2][1];
tmp[0][1] = a*LOCAL[0][0] + b*LOCAL[0][1] + c*LOCAL[0][2] ;
tmp[1][1] = a*LOCAL[1][0] + b*LOCAL[1][1] + c*LOCAL[1][2] ;
tmp[2][1] = a*LOCAL[2][0] + b*LOCAL[2][1] + c*LOCAL[2][2] ;
tmp[3][1] = SG_ZERO ;
a = UP[0][2];
c = UP[2][2];
tmp[0][2] = a*LOCAL[0][0] + c*LOCAL[0][2] ;
tmp[1][2] = a*LOCAL[1][0] + c*LOCAL[1][2] ;
tmp[2][2] = a*LOCAL[2][0] + c*LOCAL[2][2] ;
tmp[3][2] = SG_ZERO ;
tmp[0][3] = SG_ZERO ;
tmp[1][3] = SG_ZERO ;
tmp[2][3] = SG_ZERO ;
tmp[3][3] = SG_ONE ;
sgCopyMat4(dst, tmp);
}
////////////////////////////////////////////////////////////////////////
// Implementation of FGViewer.
////////////////////////////////////////////////////////////////////////
// Constructor
FGViewer::FGViewer( void ):
_scaling_type(FG_SCALING_MAX),
_fov_deg(55.0),
_dirty(true),
_lon_deg(0),
_lat_deg(0),
_alt_ft(0),
_target_lon_deg(0),
_target_lat_deg(0),
_target_alt_ft(0),
_roll_deg(0),
_pitch_deg(0),
_heading_deg(0),
_x_offset_m(0),
_y_offset_m(0),
_z_offset_m(0),
_heading_offset_deg(0),
_pitch_offset_deg(0),
_roll_offset_deg(0),
_goal_heading_offset_deg(0.0),
_goal_pitch_offset_deg(0.0)
{
sgdZeroVec3(_absolute_view_pos);
//a reasonable guess for init, so that the math doesn't blow up
}
// Destructor
FGViewer::~FGViewer( void ) {
}
void
FGViewer::init ()
{
}
void
FGViewer::bind ()
{
}
void
FGViewer::unbind ()
{
}
void
FGViewer::setType ( int type )
{
if (type == 0)
_type = FG_RPH;
if (type == 1)
_type = FG_LOOKAT;
}
void
FGViewer::setLongitude_deg (double lon_deg)
{
_dirty = true;
_lon_deg = lon_deg;
}
void
FGViewer::setLatitude_deg (double lat_deg)
{
_dirty = true;
_lat_deg = lat_deg;
}
void
FGViewer::setAltitude_ft (double alt_ft)
{
_dirty = true;
_alt_ft = alt_ft;
}
void
FGViewer::setPosition (double lon_deg, double lat_deg, double alt_ft)
{
_dirty = true;
_lon_deg = lon_deg;
_lat_deg = lat_deg;
_alt_ft = alt_ft;
}
void
FGViewer::setTargetLongitude_deg (double lon_deg)
{
_dirty = true;
_target_lon_deg = lon_deg;
}
void
FGViewer::setTargetLatitude_deg (double lat_deg)
{
_dirty = true;
_target_lat_deg = lat_deg;
}
void
FGViewer::setTargetAltitude_ft (double alt_ft)
{
_dirty = true;
_target_alt_ft = alt_ft;
}
void
FGViewer::setTargetPosition (double lon_deg, double lat_deg, double alt_ft)
{
_dirty = true;
_target_lon_deg = lon_deg;
_target_lat_deg = lat_deg;
_target_alt_ft = alt_ft;
}
void
FGViewer::setRoll_deg (double roll_deg)
{
_dirty = true;
_roll_deg = roll_deg;
}
void
FGViewer::setPitch_deg (double pitch_deg)
{
_dirty = true;
_pitch_deg = pitch_deg;
}
void
FGViewer::setHeading_deg (double heading_deg)
{
_dirty = true;
_heading_deg = heading_deg;
}
void
FGViewer::setOrientation (double roll_deg, double pitch_deg, double heading_deg)
{
_dirty = true;
_roll_deg = roll_deg;
_pitch_deg = pitch_deg;
_heading_deg = heading_deg;
}
void
FGViewer::setXOffset_m (double x_offset_m)
{
_dirty = true;
_x_offset_m = x_offset_m;
}
void
FGViewer::setYOffset_m (double y_offset_m)
{
_dirty = true;
_y_offset_m = y_offset_m;
}
void
FGViewer::setZOffset_m (double z_offset_m)
{
_dirty = true;
_z_offset_m = z_offset_m;
}
void
FGViewer::setPositionOffsets (double x_offset_m, double y_offset_m, double z_offset_m)
{
_dirty = true;
_x_offset_m = x_offset_m;
_y_offset_m = y_offset_m;
_z_offset_m = z_offset_m;
}
void
FGViewer::setRollOffset_deg (double roll_offset_deg)
{
_dirty = true;
_roll_offset_deg = roll_offset_deg;
}
void
FGViewer::setPitchOffset_deg (double pitch_offset_deg)
{
_dirty = true;
_pitch_offset_deg = pitch_offset_deg;
}
void
FGViewer::setHeadingOffset_deg (double heading_offset_deg)
{
_dirty = true;
_heading_offset_deg = heading_offset_deg;
}
void
FGViewer::setGoalRollOffset_deg (double goal_roll_offset_deg)
{
_dirty = true;
_goal_roll_offset_deg = goal_roll_offset_deg;
}
void
FGViewer::setGoalPitchOffset_deg (double goal_pitch_offset_deg)
{
_dirty = true;
_goal_pitch_offset_deg = goal_pitch_offset_deg;
if ( _goal_pitch_offset_deg < -90 ) {
_goal_pitch_offset_deg = -90.0;
}
if ( _goal_pitch_offset_deg > 90.0 ) {
_goal_pitch_offset_deg = 90.0;
}
}
void
FGViewer::setGoalHeadingOffset_deg (double goal_heading_offset_deg)
{
_dirty = true;
_goal_heading_offset_deg = goal_heading_offset_deg;
while ( _goal_heading_offset_deg < 0.0 ) {
_goal_heading_offset_deg += 360;
}
while ( _goal_heading_offset_deg > 360 ) {
_goal_heading_offset_deg -= 360;
}
}
void
FGViewer::setOrientationOffsets (double roll_offset_deg, double pitch_offset_deg, double heading_offset_deg)
{
_dirty = true;
_roll_offset_deg = roll_offset_deg;
_pitch_offset_deg = pitch_offset_deg;
_heading_offset_deg = heading_offset_deg;
}
double *
FGViewer::get_absolute_view_pos ()
{
if (_dirty)
recalc();
return _absolute_view_pos;
}
float *
FGViewer::getRelativeViewPos ()
{
if (_dirty)
recalc();
return _relative_view_pos;
}
float *
FGViewer::getZeroElevViewPos ()
{
if (_dirty)
recalc();
return _zero_elev_view_pos;
}
// recalc() is done every time one of the setters is called (making the
// cached data "dirty") on the next "get". It calculates all the outputs
// for viewer.
void
FGViewer::recalc ()
{
sgVec3 minus_z, right, forward, tilt;
sgMat4 tmpROT; // temp rotation work matrices
sgMat4 VIEW_HEADINGOFFSET, VIEW_PITCHOFFSET;
sgVec3 tmpVec3; // temp work vector (3)
// The position vectors originate from the view point or target location
// depending on the type of view.
// FIXME: In particular this routine will need to support both locations
// and chase view (aka lookat) is only unique in that the
// eye position is calculated in relation to the object's position.
// FIXME: Later note: actually the object (target) info needs to be held
// by the model class.
if (_type == FG_RPH) {
// position is the location of the pilot
recalcPositionVectors( _lon_deg, _lat_deg, _alt_ft );
// Make the world up rotation matrix for rph
sgMakeRotMat4( UP, _lon_deg, 0.0, -_lat_deg );
} else {
// position is the location of the object being looked at
recalcPositionVectors( _target_lon_deg, _target_lat_deg, _target_alt_ft );
// Make the world up rotation matrix for lookat
sgMakeRotMat4( UP, _target_lon_deg, 0.0, -_target_lat_deg );
}
// the coordinates generated by the above "recalcPositionVectors"
sgCopyVec3(_zero_elev, _zero_elev_view_pos);
sgCopyVec3(_view_pos, _relative_view_pos);
// get the world up radial vector from planet center
// (ie. effect of aircraft location on earth "sphere" approximation)
sgSetVec3( _world_up, UP[0][0], UP[0][1], UP[0][2] );
// Creat local matrix with current geodetic position. Converting
// the orientation (pitch/roll/heading) to vectors.
fgMakeLOCAL( LOCAL, _pitch_deg * SG_DEGREES_TO_RADIANS,
_roll_deg * SG_DEGREES_TO_RADIANS,
-_heading_deg * SG_DEGREES_TO_RADIANS);
// Adjust LOCAL to current world_up vector (adjustment for planet location)
MakeWithWorldUp( LOCAL, UP, LOCAL );
// copy the LOCAL matrix to COCKPIT_ROT for publication...
sgCopyMat4( LOCAL_ROT, LOCAL );
// make sg vectors view up, right and forward vectors from LOCAL
sgSetVec3( _view_up, LOCAL[0][0], LOCAL[0][1], LOCAL[0][2] );
sgSetVec3( right, LOCAL[1][0], LOCAL[1][1], LOCAL[1][2] );
sgSetVec3( forward, LOCAL[2][0], LOCAL[2][1], LOCAL[2][2] );
// create xyz offsets Vector
sgVec3 position_offset;
sgSetVec3( position_offset, _y_offset_m, _x_offset_m, _z_offset_m );
// Eye rotations.
// Looking up/down left/right in pilot view (lookfrom mode)
// or Floating Rotatation around the object in chase view (lookat mode).
// Generate the offset matrix to be applied using offset angles:
if (_type == FG_LOOKAT) {
// Note that when in "chase view" the offset is in relation to the
// orientation heading (_heading_deg) of the model being looked at as
// it is used to rotate around the model.
MakeVIEW_OFFSET( VIEW_OFFSET,
(_heading_offset_deg - _heading_deg) * SG_DEGREES_TO_RADIANS, _world_up,
_pitch_offset_deg * SG_DEGREES_TO_RADIANS, right );
}
if (_type == FG_RPH) {
// generate the view offset matrix using orientation offsets
MakeVIEW_OFFSET( VIEW_OFFSET,
_heading_offset_deg * SG_DEGREES_TO_RADIANS, _view_up,
_pitch_offset_deg * SG_DEGREES_TO_RADIANS, right );
}
if (_type == FG_LOOKAT) {
// transfrom "offset" and "orientation offset" to vector
sgXformVec3( position_offset, position_offset, UP );
sgXformVec3( position_offset, position_offset, VIEW_OFFSET );
sgVec3 object_pos, eye_pos;
// copy to coordinates to object...
sgCopyVec3( object_pos, _view_pos );
// add the offsets from object to the coordinates to get "eye"
sgAddVec3( eye_pos, _view_pos, position_offset );
// Make the VIEW matrix for "lookat".
sgMakeLookAtMat4( VIEW, eye_pos, object_pos, _view_up );
}
if (_type == FG_RPH) {
sgXformVec3( position_offset, position_offset, LOCAL);
// add the offsets including rotations to the coordinates
sgAddVec3( _view_pos, position_offset );
// Make the VIEW matrix.
VIEW[0][0] = right[0];
VIEW[0][1] = right[1];
VIEW[0][2] = right[2];
VIEW[0][3] = 0.0;
VIEW[1][0] = forward[0];
VIEW[1][1] = forward[1];
VIEW[1][2] = forward[2];
VIEW[1][3] = 0.0;
VIEW[2][0] = _view_up[0];
VIEW[2][1] = _view_up[1];
VIEW[2][2] = _view_up[2];
VIEW[2][3] = 0.0;
VIEW[3][0] = 0.0;
VIEW[3][1] = 0.0;
VIEW[3][2] = 0.0;
VIEW[3][3] = 0.0;
// multiply the OFFSETS (for heading and pitch) into the VIEW
sgPostMultMat4(VIEW, VIEW_OFFSET);
// add the position data to the matrix
VIEW[3][0] = _view_pos[0];
VIEW[3][1] = _view_pos[1];
VIEW[3][2] = _view_pos[2];
VIEW[3][3] = 1.0f;
}
// the VIEW matrix includes both rotation and translation. Let's
// knock out the translation part to make the VIEW_ROT matrix
sgCopyMat4( VIEW_ROT, VIEW );
VIEW_ROT[3][0] = VIEW_ROT[3][1] = VIEW_ROT[3][2] = 0.0;
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
sgSetVec3( minus_z, 0.0, 0.0, -1.0 );
sgmap_vec_onto_cur_surface_plane(_world_up, _view_pos, minus_z,
_surface_south);
sgNormalizeVec3(_surface_south);
// now calculate the surface east vector
sgVec3 world_down;
sgNegateVec3(world_down, _world_up);
sgVectorProductVec3(_surface_east, _surface_south, world_down);
set_clean();
}
void
FGViewer::recalcPositionVectors (double lon_deg, double lat_deg, double alt_ft) const
{
double sea_level_radius_m;
double lat_geoc_rad;
// Convert from geodetic to geocentric
// coordinates.
sgGeodToGeoc(lat_deg * SGD_DEGREES_TO_RADIANS,
alt_ft * SG_FEET_TO_METER,
&sea_level_radius_m,
&lat_geoc_rad);
// Calculate the cartesian coordinates
// of point directly below at sea level.
// aka Zero Elevation Position
Point3D p = Point3D(lon_deg * SG_DEGREES_TO_RADIANS,
lat_geoc_rad,
sea_level_radius_m);
Point3D tmp = sgPolarToCart3d(p) - scenery.get_next_center();
sgSetVec3(_zero_elev_view_pos, tmp[0], tmp[1], tmp[2]);
// Calculate the absolute view position
// in fgfs coordinates.
// aka Absolute View Position
p.setz(p.radius() + alt_ft * SG_FEET_TO_METER);
tmp = sgPolarToCart3d(p);
sgdSetVec3(_absolute_view_pos, tmp[0], tmp[1], tmp[2]);
// Calculate the relative view position
// from the scenery center.
// aka Relative View Position
sgdVec3 scenery_center;
sgdSetVec3(scenery_center,
scenery.get_next_center().x(),
scenery.get_next_center().y(),
scenery.get_next_center().z());
sgdVec3 view_pos;
sgdSubVec3(view_pos, _absolute_view_pos, scenery_center);
sgSetVec3(_relative_view_pos, view_pos);
}
double
FGViewer::get_h_fov()
{
switch (_scaling_type) {
case FG_SCALING_WIDTH: // h_fov == fov
return _fov_deg;
case FG_SCALING_MAX:
if (_aspect_ratio < 1.0) {
// h_fov == fov
return _fov_deg;
} else {
// v_fov == fov
return atan(tan(_fov_deg/2 * SG_DEGREES_TO_RADIANS) / _aspect_ratio) *
SG_RADIANS_TO_DEGREES * 2;
}
default:
assert(false);
}
}
double
FGViewer::get_v_fov()
{
switch (_scaling_type) {
case FG_SCALING_WIDTH: // h_fov == fov
return atan(tan(_fov_deg/2 * SG_DEGREES_TO_RADIANS) * _aspect_ratio) *
SG_RADIANS_TO_DEGREES * 2;
case FG_SCALING_MAX:
if (_aspect_ratio < 1.0) {
// h_fov == fov
return atan(tan(_fov_deg/2 * SG_DEGREES_TO_RADIANS) * _aspect_ratio) *
SG_RADIANS_TO_DEGREES * 2;
} else {
// v_fov == fov
return _fov_deg;
}
default:
assert(false);
}
}
void
FGViewer::update (int dt)
{
int i;
for ( i = 0; i < dt; i++ ) {
if ( fabs( _goal_heading_offset_deg - _heading_offset_deg) < 1 ) {
setHeadingOffset_deg( _goal_heading_offset_deg );
break;
} else {
// move current_view.headingoffset towards
// current_view.goal_view_offset
if ( _goal_heading_offset_deg > _heading_offset_deg )
{
if ( _goal_heading_offset_deg - _heading_offset_deg < 180 ){
incHeadingOffset_deg( 0.5 );
} else {
incHeadingOffset_deg( -0.5 );
}
} else {
if ( _heading_offset_deg - _goal_heading_offset_deg < 180 ){
incHeadingOffset_deg( -0.5 );
} else {
incHeadingOffset_deg( 0.5 );
}
}
if ( _heading_offset_deg > 360 ) {
incHeadingOffset_deg( -360 );
} else if ( _heading_offset_deg < 0 ) {
incHeadingOffset_deg( 360 );
}
}
}
for ( i = 0; i < dt; i++ ) {
if ( fabs( _goal_pitch_offset_deg - _pitch_offset_deg ) < 1 ) {
setPitchOffset_deg( _goal_pitch_offset_deg );
break;
} else {
// move current_view.pitch_offset_deg towards
// current_view.goal_pitch_offset
if ( _goal_pitch_offset_deg > _pitch_offset_deg )
{
incPitchOffset_deg( 1.0 );
} else {
incPitchOffset_deg( -1.0 );
}
if ( _pitch_offset_deg > 90 ) {
setPitchOffset_deg(90);
} else if ( _pitch_offset_deg < -90 ) {
setPitchOffset_deg( -90 );
}
}
}
}