2f2d486778
values that were angles between the aircraft's orientation and the global velocity vector, not the airflow velocity. So the HUD velocity vector was wrong when the wind was non-zero. Fix that.
174 lines
5.1 KiB
C++
174 lines
5.1 KiB
C++
#include "Math.hpp"
|
|
#include "Glue.hpp"
|
|
namespace yasim {
|
|
|
|
void Glue::calcAlphaBeta(State* s, float* wind, float* alpha, float* beta)
|
|
{
|
|
// Convert the velocity to the aircraft frame.
|
|
float v[3];
|
|
Math::sub3(s->v, wind, v);
|
|
Math::vmul33(s->orient, v, v);
|
|
|
|
// By convention, positive alpha is an up pitch, and a positive
|
|
// beta is yawed to the right.
|
|
*alpha = -Math::atan2(v[2], v[0]);
|
|
*beta = Math::atan2(v[1], v[0]);
|
|
}
|
|
|
|
void Glue::calcEulerRates(State* s, float* roll, float* pitch, float* hdg)
|
|
{
|
|
// This one is easy, the projection of the rotation vector around
|
|
// the "up" axis.
|
|
float up[3];
|
|
geodUp(s->pos, up);
|
|
*hdg = -Math::dot3(up, s->rot); // negate for "NED" conventions
|
|
|
|
// A bit harder: the X component of the rotation vector expressed
|
|
// in airframe coordinates.
|
|
float lr[3];
|
|
Math::vmul33(s->orient, s->rot, lr);
|
|
*roll = lr[0];
|
|
|
|
// Hardest: the component of rotation along the direction formed
|
|
// by the cross product of (and thus perpendicular to) the
|
|
// aircraft's forward vector (i.e. the first three elements of the
|
|
// orientation matrix) and the "up" axis.
|
|
float pitchAxis[3];
|
|
Math::cross3(s->orient, up, pitchAxis);
|
|
Math::unit3(pitchAxis, pitchAxis);
|
|
*pitch = Math::dot3(pitchAxis, s->rot);
|
|
}
|
|
|
|
void Glue::xyz2nedMat(double lat, double lon, float* out)
|
|
{
|
|
// Shorthand for our output vectors:
|
|
float *north = out, *east = out+3, *down = out+6;
|
|
|
|
float slat = (float) Math::sin(lat);
|
|
float clat = (float)Math::cos(lat);
|
|
float slon = (float)Math::sin(lon);
|
|
float clon = (float)Math::cos(lon);
|
|
|
|
north[0] = -clon * slat;
|
|
north[1] = -slon * slat;
|
|
north[2] = clat;
|
|
|
|
east[0] = -slon;
|
|
east[1] = clon;
|
|
east[2] = 0;
|
|
|
|
down[0] = -clon * clat;
|
|
down[1] = -slon * clat;
|
|
down[2] = -slat;
|
|
}
|
|
|
|
void Glue::euler2orient(float roll, float pitch, float hdg, float* out)
|
|
{
|
|
// To translate a point in aircraft space to the output "NED"
|
|
// frame, first negate the Y and Z axes (ugh), then roll around
|
|
// the X axis, then pitch around Y, then point to the correct
|
|
// heading about Z. Expressed as a matrix multiplication, then,
|
|
// the transformation from aircraft to local is HPRN. And our
|
|
// desired output is the inverse (i.e. transpose) of that. Since
|
|
// all rotations are 2D, they have a simpler form than a generic
|
|
// rotation and are done out longhand below for efficiency.
|
|
|
|
// Init to the identity matrix
|
|
int i, j;
|
|
for(i=0; i<3; i++)
|
|
for(j=0; j<3; j++)
|
|
out[3*i+j] = (i==j) ? 1.0f : 0.0f;
|
|
|
|
// Negate Y and Z
|
|
out[4] = out[8] = -1;
|
|
|
|
float s = Math::sin(roll);
|
|
float c = Math::cos(roll);
|
|
int col;
|
|
for(col=0; col<3; col++) {
|
|
float y=out[col+3], z=out[col+6];
|
|
out[col+3] = c*y - s*z;
|
|
out[col+6] = s*y + c*z;
|
|
}
|
|
|
|
s = Math::sin(pitch);
|
|
c = Math::cos(pitch);
|
|
for(col=0; col<3; col++) {
|
|
float x=out[col], z=out[col+6];
|
|
out[col] = c*x + s*z;
|
|
out[col+6] = c*z - s*x;
|
|
}
|
|
|
|
s = Math::sin(hdg);
|
|
c = Math::cos(hdg);
|
|
for(col=0; col<3; col++) {
|
|
float x=out[col], y=out[col+3];
|
|
out[col] = c*x - s*y;
|
|
out[col+3] = s*x + c*y;
|
|
}
|
|
|
|
// Invert:
|
|
Math::trans33(out, out);
|
|
}
|
|
|
|
void Glue::orient2euler(float* o, float* roll, float* pitch, float* hdg)
|
|
{
|
|
// The airplane's "pointing" direction in NED coordinates is vx,
|
|
// and it's y (left-right) axis is vy.
|
|
float vx[3], vy[3];
|
|
vx[0]=o[0], vx[1]=o[1], vx[2]=o[2];
|
|
vy[0]=o[3], vy[1]=o[4], vy[2]=o[5];
|
|
|
|
// The heading is simply the rotation of the projection onto the
|
|
// XY plane
|
|
*hdg = Math::atan2(vx[1], vx[0]);
|
|
|
|
// The pitch is the angle between the XY plane and vx, remember
|
|
// that rotations toward positive Z are _negative_
|
|
float projmag = Math::sqrt(vx[0]*vx[0]+vx[1]*vx[1]);
|
|
*pitch = -Math::atan2(vx[2], projmag);
|
|
|
|
// Roll is a bit harder. Construct an "unrolled" orientation,
|
|
// where the X axis is the same as the "rolled" one, and the Y
|
|
// axis is parallel to the XY plane. These two can give you an
|
|
// "unrolled" Z axis as their cross product. Now, take the "vy"
|
|
// axis, which points out the left wing. The projections of this
|
|
// along the "unrolled" YZ plane will give you the roll angle via
|
|
// atan().
|
|
float* ux = vx;
|
|
float uy[3], uz[3];
|
|
|
|
uz[0] = 0; uz[1] = 0; uz[2] = 1;
|
|
Math::cross3(uz, ux, uy);
|
|
Math::unit3(uy, uy);
|
|
Math::cross3(ux, uy, uz);
|
|
|
|
float py = -Math::dot3(vy, uy);
|
|
float pz = -Math::dot3(vy, uz);
|
|
*roll = Math::atan2(pz, py);
|
|
}
|
|
|
|
void Glue::geodUp(double lat, double lon, float* up)
|
|
{
|
|
double coslat = Math::cos(lat);
|
|
up[0] = (float)(Math::cos(lon) * coslat);
|
|
up[1] = (float)(Math::sin(lon) * coslat);
|
|
up[2] = (float)(Math::sin(lat));
|
|
}
|
|
|
|
// FIXME: Hardcoded WGS84 numbers...
|
|
void Glue::geodUp(double* pos, float* up)
|
|
{
|
|
const double SQUASH = 0.9966471893352525192801545;
|
|
const double STRETCH = 1.0033640898209764189003079;
|
|
float x = (float)(pos[0] * SQUASH);
|
|
float y = (float)(pos[1] * SQUASH);
|
|
float z = (float)(pos[2] * STRETCH);
|
|
float norm = 1/Math::sqrt(x*x + y*y + z*z);
|
|
up[0] = x * norm;
|
|
up[1] = y * norm;
|
|
up[2] = z * norm;
|
|
}
|
|
|
|
}; // namespace yasim
|
|
|