#include "Math.hpp" #include "Glue.hpp" namespace yasim { void Glue::calcAlphaBeta(State* s, float* wind, float* alpha, float* beta) { // Convert the velocity to the aircraft frame. float v[3]; Math::sub3(s->v, wind, v); Math::vmul33(s->orient, v, v); // By convention, positive alpha is an up pitch, and a positive // beta is yawed to the right. *alpha = -Math::atan2(v[2], v[0]); *beta = Math::atan2(v[1], v[0]); } void Glue::calcEulerRates(State* s, float* roll, float* pitch, float* hdg) { // This one is easy, the projection of the rotation vector around // the "up" axis. float up[3]; geodUp(s->pos, up); *hdg = -Math::dot3(up, s->rot); // negate for "NED" conventions // A bit harder: the X component of the rotation vector expressed // in airframe coordinates. float lr[3]; Math::vmul33(s->orient, s->rot, lr); *roll = lr[0]; // Hardest: the component of rotation along the direction formed // by the cross product of (and thus perpendicular to) the // aircraft's forward vector (i.e. the first three elements of the // orientation matrix) and the "up" axis. float pitchAxis[3]; Math::cross3(s->orient, up, pitchAxis); Math::unit3(pitchAxis, pitchAxis); *pitch = Math::dot3(pitchAxis, s->rot); } void Glue::xyz2nedMat(double lat, double lon, float* out) { // Shorthand for our output vectors: float *north = out, *east = out+3, *down = out+6; float slat = (float) Math::sin(lat); float clat = (float)Math::cos(lat); float slon = (float)Math::sin(lon); float clon = (float)Math::cos(lon); north[0] = -clon * slat; north[1] = -slon * slat; north[2] = clat; east[0] = -slon; east[1] = clon; east[2] = 0; down[0] = -clon * clat; down[1] = -slon * clat; down[2] = -slat; } void Glue::euler2orient(float roll, float pitch, float hdg, float* out) { // To translate a point in aircraft space to the output "NED" // frame, first negate the Y and Z axes (ugh), then roll around // the X axis, then pitch around Y, then point to the correct // heading about Z. Expressed as a matrix multiplication, then, // the transformation from aircraft to local is HPRN. And our // desired output is the inverse (i.e. transpose) of that. Since // all rotations are 2D, they have a simpler form than a generic // rotation and are done out longhand below for efficiency. // Init to the identity matrix int i, j; for(i=0; i<3; i++) for(j=0; j<3; j++) out[3*i+j] = (i==j) ? 1.0f : 0.0f; // Negate Y and Z out[4] = out[8] = -1; float s = Math::sin(roll); float c = Math::cos(roll); int col; for(col=0; col<3; col++) { float y=out[col+3], z=out[col+6]; out[col+3] = c*y - s*z; out[col+6] = s*y + c*z; } s = Math::sin(pitch); c = Math::cos(pitch); for(col=0; col<3; col++) { float x=out[col], z=out[col+6]; out[col] = c*x + s*z; out[col+6] = c*z - s*x; } s = Math::sin(hdg); c = Math::cos(hdg); for(col=0; col<3; col++) { float x=out[col], y=out[col+3]; out[col] = c*x - s*y; out[col+3] = s*x + c*y; } // Invert: Math::trans33(out, out); } void Glue::orient2euler(float* o, float* roll, float* pitch, float* hdg) { // The airplane's "pointing" direction in NED coordinates is vx, // and it's y (left-right) axis is vy. float vx[3], vy[3]; vx[0]=o[0], vx[1]=o[1], vx[2]=o[2]; vy[0]=o[3], vy[1]=o[4], vy[2]=o[5]; // The heading is simply the rotation of the projection onto the // XY plane *hdg = Math::atan2(vx[1], vx[0]); // The pitch is the angle between the XY plane and vx, remember // that rotations toward positive Z are _negative_ float projmag = Math::sqrt(vx[0]*vx[0]+vx[1]*vx[1]); *pitch = -Math::atan2(vx[2], projmag); // Roll is a bit harder. Construct an "unrolled" orientation, // where the X axis is the same as the "rolled" one, and the Y // axis is parallel to the XY plane. These two can give you an // "unrolled" Z axis as their cross product. Now, take the "vy" // axis, which points out the left wing. The projections of this // along the "unrolled" YZ plane will give you the roll angle via // atan(). float* ux = vx; float uy[3], uz[3]; uz[0] = 0; uz[1] = 0; uz[2] = 1; Math::cross3(uz, ux, uy); Math::unit3(uy, uy); Math::cross3(ux, uy, uz); float py = -Math::dot3(vy, uy); float pz = -Math::dot3(vy, uz); *roll = Math::atan2(pz, py); } void Glue::geodUp(double lat, double lon, float* up) { double coslat = Math::cos(lat); up[0] = (float)(Math::cos(lon) * coslat); up[1] = (float)(Math::sin(lon) * coslat); up[2] = (float)(Math::sin(lat)); } // FIXME: Hardcoded WGS84 numbers... void Glue::geodUp(double* pos, float* up) { const double SQUASH = 0.9966471893352525192801545; const double STRETCH = 1.0033640898209764189003079; float x = (float)(pos[0] * SQUASH); float y = (float)(pos[1] * SQUASH); float z = (float)(pos[2] * STRETCH); float norm = 1/Math::sqrt(x*x + y*y + z*z); up[0] = x * norm; up[1] = y * norm; up[2] = z * norm; } }; // namespace yasim