220 lines
7.5 KiB
C++
220 lines
7.5 KiB
C++
// ATCutils.cxx - Utility functions for the ATC / AI system
|
|
//
|
|
// Written by David Luff, started March 2002.
|
|
//
|
|
// Copyright (C) 2002 David C Luff - david.luff@nottingham.ac.uk
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
#include <math.h>
|
|
#include <simgear/math/point3d.hxx>
|
|
#include <simgear/constants.h>
|
|
#include <plib/sg.h>
|
|
//#include <iomanip.h>
|
|
|
|
#include "ATCutils.hxx"
|
|
|
|
// Convert any number to spoken digits
|
|
string ConvertNumToSpokenDigits(string n) {
|
|
//cout << "n = " << n << endl;
|
|
string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
|
|
string pt = "decimal";
|
|
string str = "";
|
|
|
|
for(unsigned int i=0; i<n.length(); ++i) {
|
|
//cout << "n.substr(" << i << ",1 = " << n.substr(i,1) << endl;
|
|
if(n.substr(i,1) == " ") {
|
|
// do nothing
|
|
} else if(n.substr(i,1) == ".") {
|
|
str += pt;
|
|
} else {
|
|
str += nums[atoi((n.substr(i,1)).c_str())];
|
|
}
|
|
if(i != (n.length()-1)) { // ie. don't add a space at the end.
|
|
str += " ";
|
|
}
|
|
}
|
|
|
|
return(str);
|
|
}
|
|
|
|
// Convert a 2 digit rwy number to a spoken-style string
|
|
string ConvertRwyNumToSpokenString(int n) {
|
|
string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
|
|
// Basic error/sanity checking
|
|
while(n < 0) {
|
|
n += 36;
|
|
}
|
|
while(n > 36) {
|
|
n -= 36;
|
|
}
|
|
if(n == 0) {
|
|
n = 36; // Is this right?
|
|
}
|
|
|
|
string str = "";
|
|
int index = n/10;
|
|
str += nums[index];
|
|
n -= (index * 10);
|
|
//str += "-";
|
|
str += " "; //Changed this for the benefit of the voice token parser - prefer the "-" in the visual output though.
|
|
str += nums[n];
|
|
return(str);
|
|
}
|
|
|
|
// Return the phonetic letter of a letter represented as an integer 1->26
|
|
string GetPhoneticIdent(int i) {
|
|
// TODO - Check i is between 1 and 26 and wrap if necessary
|
|
switch(i) {
|
|
case 1 : return("alpha");
|
|
case 2 : return("bravo");
|
|
case 3 : return("charlie");
|
|
case 4 : return("delta");
|
|
case 5 : return("echo");
|
|
case 6 : return("foxtrot");
|
|
case 7 : return("golf");
|
|
case 8 : return("hotel");
|
|
case 9 : return("india");
|
|
case 10 : return("juliet");
|
|
case 11 : return("kilo");
|
|
case 12 : return("lima");
|
|
case 13 : return("mike");
|
|
case 14 : return("november");
|
|
case 15 : return("oscar");
|
|
case 16 : return("papa");
|
|
case 17 : return("quebec");
|
|
case 18 : return("romeo");
|
|
case 19 : return("sierra");
|
|
case 20 : return("tango");
|
|
case 21 : return("uniform");
|
|
case 22 : return("victor");
|
|
case 23 : return("whiskey");
|
|
case 24 : return("x-ray");
|
|
case 25 : return("yankee");
|
|
case 26 : return("zulu");
|
|
}
|
|
// We shouldn't get here
|
|
return("Error");
|
|
}
|
|
|
|
// Given two positions (lat & lon in degrees), get the HORIZONTAL separation (in meters)
|
|
double dclGetHorizontalSeparation(Point3D pos1, Point3D pos2) {
|
|
double x; //East-West separation
|
|
double y; //North-South separation
|
|
double z; //Horizontal separation - z = sqrt(x^2 + y^2)
|
|
|
|
double lat1 = pos1.lat() * SG_DEGREES_TO_RADIANS;
|
|
double lon1 = pos1.lon() * SG_DEGREES_TO_RADIANS;
|
|
double lat2 = pos2.lat() * SG_DEGREES_TO_RADIANS;
|
|
double lon2 = pos2.lon() * SG_DEGREES_TO_RADIANS;
|
|
|
|
y = sin(fabs(lat1 - lat2)) * SG_EQUATORIAL_RADIUS_M;
|
|
x = sin(fabs(lon1 - lon2)) * SG_EQUATORIAL_RADIUS_M * (cos((lat1 + lat2) / 2.0));
|
|
z = sqrt(x*x + y*y);
|
|
|
|
return(z);
|
|
}
|
|
|
|
// Given a point and a line, get the HORIZONTAL shortest distance from the point to a point on the line.
|
|
// Expects to be fed orthogonal co-ordinates, NOT lat & lon !
|
|
// The units of the separation will be those of the input.
|
|
double dclGetLinePointSeparation(double px, double py, double x1, double y1, double x2, double y2) {
|
|
double vecx = x2-x1;
|
|
double vecy = y2-y1;
|
|
double magline = sqrt(vecx*vecx + vecy*vecy);
|
|
double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1)) / (magline * magline);
|
|
double x0 = x1 + u*(x2-x1);
|
|
double y0 = y1 + u*(y2-y1);
|
|
vecx = px - x0;
|
|
vecy = py - y0;
|
|
double d = sqrt(vecx*vecx + vecy*vecy);
|
|
if(d < 0) {
|
|
d *= -1;
|
|
}
|
|
return(d);
|
|
}
|
|
|
|
// Given a position (lat/lon/elev), heading and vertical angle (degrees), and distance (meters), calculate the new position.
|
|
// This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead!
|
|
// Assumes that the ground is not hit!!! Expects heading and angle in degrees, distance in meters.
|
|
Point3D dclUpdatePosition(Point3D pos, double heading, double angle, double distance) {
|
|
//cout << setprecision(10) << pos.lon() << ' ' << pos.lat() << '\n';
|
|
heading *= DCL_DEGREES_TO_RADIANS;
|
|
angle *= DCL_DEGREES_TO_RADIANS;
|
|
double lat = pos.lat() * DCL_DEGREES_TO_RADIANS;
|
|
double lon = pos.lon() * DCL_DEGREES_TO_RADIANS;
|
|
double elev = pos.elev();
|
|
//cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n';
|
|
|
|
double horiz_dist = distance * cos(angle);
|
|
double vert_dist = distance * sin(angle);
|
|
|
|
double north_dist = horiz_dist * cos(heading);
|
|
double east_dist = horiz_dist * sin(heading);
|
|
|
|
//cout << distance << ' ' << horiz_dist << ' ' << vert_dist << ' ' << north_dist << ' ' << east_dist << '\n';
|
|
|
|
double delta_lat = asin(north_dist / (double)SG_EQUATORIAL_RADIUS_M);
|
|
double delta_lon = asin(east_dist / (double)SG_EQUATORIAL_RADIUS_M) * (1.0 / cos(lat)); // I suppose really we should use the average of the original and new lat but we'll assume that this will be good enough.
|
|
//cout << delta_lon*DCL_RADIANS_TO_DEGREES << ' ' << delta_lat*DCL_RADIANS_TO_DEGREES << '\n';
|
|
lat += delta_lat;
|
|
lon += delta_lon;
|
|
elev += vert_dist;
|
|
//cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n';
|
|
|
|
//cout << setprecision(15) << DCL_DEGREES_TO_RADIANS * DCL_RADIANS_TO_DEGREES << '\n';
|
|
|
|
return(Point3D(lon*DCL_RADIANS_TO_DEGREES, lat*DCL_RADIANS_TO_DEGREES, elev));
|
|
}
|
|
|
|
// Get a heading in degrees from one lat/lon to another.
|
|
// This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead!
|
|
// Warning - at the moment we are not checking for identical points - currently it returns 90 in this instance.
|
|
double GetHeadingFromTo(Point3D A, Point3D B) {
|
|
double latA = A.lat() * DCL_DEGREES_TO_RADIANS;
|
|
double lonA = A.lon() * DCL_DEGREES_TO_RADIANS;
|
|
double latB = B.lat() * DCL_DEGREES_TO_RADIANS;
|
|
double lonB = B.lon() * DCL_DEGREES_TO_RADIANS;
|
|
double xdist = sin(lonB - lonA) * (double)SG_EQUATORIAL_RADIUS_M * cos((latA+latB)/2.0);
|
|
double ydist = sin(latB - latA) * (double)SG_EQUATORIAL_RADIUS_M;
|
|
|
|
if(xdist >= 0) {
|
|
if(ydist > 0) {
|
|
return(atan(xdist/ydist) * DCL_RADIANS_TO_DEGREES);
|
|
} else if (ydist == 0) {
|
|
return(90.0);
|
|
} else {
|
|
return(180.0 - atan(xdist/fabs(ydist)) * DCL_RADIANS_TO_DEGREES);
|
|
}
|
|
} else {
|
|
if(ydist > 0) {
|
|
return(360.0 - atan(fabs(xdist)/ydist) * DCL_RADIANS_TO_DEGREES);
|
|
} else if (ydist == 0) {
|
|
return(270.0);
|
|
} else {
|
|
return(180.0 + atan(xdist/ydist) * DCL_RADIANS_TO_DEGREES);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given a heading (in degrees), bound it from 0 -> 360
|
|
void dclBoundHeading(double &hdg) {
|
|
while(hdg < 0.0) {
|
|
hdg += 360.0;
|
|
}
|
|
while(hdg > 360.0) {
|
|
hdg -= 360.0;
|
|
}
|
|
}
|