// ATCutils.cxx - Utility functions for the ATC / AI system // // Written by David Luff, started March 2002. // // Copyright (C) 2002 David C Luff - david.luff@nottingham.ac.uk // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. #include #include #include #include //#include #include "ATCutils.hxx" // Convert any number to spoken digits string ConvertNumToSpokenDigits(string n) { //cout << "n = " << n << endl; string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"}; string pt = "decimal"; string str = ""; for(unsigned int i=0; i 36) { n -= 36; } if(n == 0) { n = 36; // Is this right? } string str = ""; int index = n/10; str += nums[index]; n -= (index * 10); //str += "-"; str += " "; //Changed this for the benefit of the voice token parser - prefer the "-" in the visual output though. str += nums[n]; return(str); } // Return the phonetic letter of a letter represented as an integer 1->26 string GetPhoneticIdent(int i) { // TODO - Check i is between 1 and 26 and wrap if necessary switch(i) { case 1 : return("alpha"); case 2 : return("bravo"); case 3 : return("charlie"); case 4 : return("delta"); case 5 : return("echo"); case 6 : return("foxtrot"); case 7 : return("golf"); case 8 : return("hotel"); case 9 : return("india"); case 10 : return("juliet"); case 11 : return("kilo"); case 12 : return("lima"); case 13 : return("mike"); case 14 : return("november"); case 15 : return("oscar"); case 16 : return("papa"); case 17 : return("quebec"); case 18 : return("romeo"); case 19 : return("sierra"); case 20 : return("tango"); case 21 : return("uniform"); case 22 : return("victor"); case 23 : return("whiskey"); case 24 : return("x-ray"); case 25 : return("yankee"); case 26 : return("zulu"); } // We shouldn't get here return("Error"); } // Given two positions (lat & lon in degrees), get the HORIZONTAL separation (in meters) double dclGetHorizontalSeparation(Point3D pos1, Point3D pos2) { double x; //East-West separation double y; //North-South separation double z; //Horizontal separation - z = sqrt(x^2 + y^2) double lat1 = pos1.lat() * SG_DEGREES_TO_RADIANS; double lon1 = pos1.lon() * SG_DEGREES_TO_RADIANS; double lat2 = pos2.lat() * SG_DEGREES_TO_RADIANS; double lon2 = pos2.lon() * SG_DEGREES_TO_RADIANS; y = sin(fabs(lat1 - lat2)) * SG_EQUATORIAL_RADIUS_M; x = sin(fabs(lon1 - lon2)) * SG_EQUATORIAL_RADIUS_M * (cos((lat1 + lat2) / 2.0)); z = sqrt(x*x + y*y); return(z); } // Given a point and a line, get the HORIZONTAL shortest distance from the point to a point on the line. // Expects to be fed orthogonal co-ordinates, NOT lat & lon ! // The units of the separation will be those of the input. double dclGetLinePointSeparation(double px, double py, double x1, double y1, double x2, double y2) { double vecx = x2-x1; double vecy = y2-y1; double magline = sqrt(vecx*vecx + vecy*vecy); double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1)) / (magline * magline); double x0 = x1 + u*(x2-x1); double y0 = y1 + u*(y2-y1); vecx = px - x0; vecy = py - y0; double d = sqrt(vecx*vecx + vecy*vecy); if(d < 0) { d *= -1; } return(d); } // Given a position (lat/lon/elev), heading and vertical angle (degrees), and distance (meters), calculate the new position. // This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead! // Assumes that the ground is not hit!!! Expects heading and angle in degrees, distance in meters. Point3D dclUpdatePosition(Point3D pos, double heading, double angle, double distance) { //cout << setprecision(10) << pos.lon() << ' ' << pos.lat() << '\n'; heading *= DCL_DEGREES_TO_RADIANS; angle *= DCL_DEGREES_TO_RADIANS; double lat = pos.lat() * DCL_DEGREES_TO_RADIANS; double lon = pos.lon() * DCL_DEGREES_TO_RADIANS; double elev = pos.elev(); //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n'; double horiz_dist = distance * cos(angle); double vert_dist = distance * sin(angle); double north_dist = horiz_dist * cos(heading); double east_dist = horiz_dist * sin(heading); //cout << distance << ' ' << horiz_dist << ' ' << vert_dist << ' ' << north_dist << ' ' << east_dist << '\n'; double delta_lat = asin(north_dist / (double)SG_EQUATORIAL_RADIUS_M); double delta_lon = asin(east_dist / (double)SG_EQUATORIAL_RADIUS_M) * (1.0 / cos(lat)); // I suppose really we should use the average of the original and new lat but we'll assume that this will be good enough. //cout << delta_lon*DCL_RADIANS_TO_DEGREES << ' ' << delta_lat*DCL_RADIANS_TO_DEGREES << '\n'; lat += delta_lat; lon += delta_lon; elev += vert_dist; //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n'; //cout << setprecision(15) << DCL_DEGREES_TO_RADIANS * DCL_RADIANS_TO_DEGREES << '\n'; return(Point3D(lon*DCL_RADIANS_TO_DEGREES, lat*DCL_RADIANS_TO_DEGREES, elev)); } // Get a heading in degrees from one lat/lon to another. // This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead! // Warning - at the moment we are not checking for identical points - currently it returns 90 in this instance. double GetHeadingFromTo(Point3D A, Point3D B) { double latA = A.lat() * DCL_DEGREES_TO_RADIANS; double lonA = A.lon() * DCL_DEGREES_TO_RADIANS; double latB = B.lat() * DCL_DEGREES_TO_RADIANS; double lonB = B.lon() * DCL_DEGREES_TO_RADIANS; double xdist = sin(lonB - lonA) * (double)SG_EQUATORIAL_RADIUS_M * cos((latA+latB)/2.0); double ydist = sin(latB - latA) * (double)SG_EQUATORIAL_RADIUS_M; if(xdist >= 0) { if(ydist > 0) { return(atan(xdist/ydist) * DCL_RADIANS_TO_DEGREES); } else if (ydist == 0) { return(90.0); } else { return(180.0 - atan(xdist/fabs(ydist)) * DCL_RADIANS_TO_DEGREES); } } else { if(ydist > 0) { return(360.0 - atan(fabs(xdist)/ydist) * DCL_RADIANS_TO_DEGREES); } else if (ydist == 0) { return(270.0); } else { return(180.0 + atan(xdist/ydist) * DCL_RADIANS_TO_DEGREES); } } } // Given a heading (in degrees), bound it from 0 -> 360 void dclBoundHeading(double &hdg) { while(hdg < 0.0) { hdg += 360.0; } while(hdg > 360.0) { hdg -= 360.0; } }