1
0
Fork 0
flightgear/src/FDM/YASim/Launchbar.cpp
2005-02-17 10:37:26 +00:00

337 lines
9.5 KiB
C++

#include "Math.hpp"
#include "BodyEnvironment.hpp"
#include "Ground.hpp"
#include "RigidBody.hpp"
#include "Launchbar.hpp"
#include <iostream>
using namespace std;
namespace yasim {
Launchbar::Launchbar()
{
int i;
for(i=0; i<3; i++)
_launchbar_mount[i] = _holdback_mount[i] = _force[i] = 0;
for(i=0; i<2; i++)
_global_ground[i] = 0;
_global_ground[2] = 1;
_global_ground[3] = -1e5;
_length = 0.0;
_holdback_length = 2.0;
_down_ang = 0.0;
_up_ang = 0.0;
_extension = 0.0;
_frac = 0.0;
_launch_cmd = false;
_pos_on_cat = 0.0;
_state = Unmounted;
}
void Launchbar::setLaunchbarMount(float* position)
{
int i;
for(i=0; i<3; i++) _launchbar_mount[i] = position[i];
}
void Launchbar::setHoldbackMount(float* position)
{
int i;
for(i=0; i<3; i++) _holdback_mount[i] = position[i];
}
void Launchbar::setLength(float length)
{
_length = length;
}
void Launchbar::setDownAngle(float ang)
{
_down_ang = ang;
}
void Launchbar::setUpAngle(float ang)
{
_up_ang = ang;
}
void Launchbar::setExtension(float extension)
{
_extension = extension;
}
void Launchbar::setLaunchCmd(bool cmd)
{
_launch_cmd = cmd;
}
void Launchbar::setGlobalGround(double *global_ground)
{
int i;
for(i=0; i<4; i++) _global_ground[i] = global_ground[i];
}
void Launchbar::getLaunchbarMount(float* out)
{
int i;
for(i=0; i<3; i++) out[i] = _launchbar_mount[i];
}
void Launchbar::getHoldbackMount(float* out)
{
int i;
for(i=0; i<3; i++) out[i] = _holdback_mount[i];
}
float Launchbar::getLength(void)
{
return _length;
}
float Launchbar::getDownAngle(void)
{
return _down_ang;
}
float Launchbar::getUpAngle(void)
{
return _up_ang;
}
float Launchbar::getExtension(void)
{
return _extension;
}
void Launchbar::getForce(float* force, float* off)
{
Math::set3(_force, force);
Math::set3(_launchbar_mount, off);
}
float Launchbar::getCompressFraction()
{
return _frac;
}
void Launchbar::getTipPosition(float* out)
{
// The launchbar tip in local coordinates.
float ang = _frac*(_down_ang - _up_ang) + _up_ang;
float pos_tip[3] = { _length*Math::cos(ang), 0.0,-_length*Math::sin(ang) };
Math::add3(_launchbar_mount, pos_tip, out);
}
void Launchbar::getTipGlobalPosition(State* s, double* out)
{
// The launchbar tip in local coordinates.
float pos_tip[3];
getTipPosition(pos_tip);
// The launchbar tip in global coordinates.
s->posLocalToGlobal(pos_tip, out);
}
float Launchbar::getPercentPosOnCat(float* lpos, float off, float lends[2][3])
{
// Compute the forward direction of the cat.
float lforward[3];
Math::sub3(lends[1], lends[0], lforward);
float ltopos[3];
Math::sub3(lpos, lends[0], ltopos);
float fwlen = Math::mag3(lforward);
return (Math::dot3(ltopos, lforward)/fwlen + off)/fwlen;
}
void Launchbar::getPosOnCat(float perc, float* lpos, float* lvel,
float lends[2][3], float lendvels[2][3])
{
if (perc < 0.0)
perc = 0.0;
if (1.0 < perc)
perc = 1.0;
// Compute the forward direction of the cat.
float lforward[3];
Math::sub3(lends[1], lends[0], lforward);
Math::mul3(perc, lforward, lpos);
Math::add3(lends[0], lpos, lpos);
float tmp[3];
Math::mul3(perc, lendvels[0], lvel);
Math::mul3(1.0-perc, lendvels[1], tmp);
Math::add3(tmp, lvel, lvel);
}
void Launchbar::calcForce(Ground *g_cb, RigidBody* body, State* s, float* lv, float* lrot)
{
// Init the return values
int i;
for(i=0; i<3; i++) _force[i] = 0;
if (_state != Unmounted)
_extension = 1;
// Don't bother if it's fully retracted
if(_extension <= 0)
return;
if (_extension < _frac)
_frac = _extension;
// The launchbar tip in global coordinates.
double launchbar_pos[3];
getTipGlobalPosition(s, launchbar_pos);
// If the launchbars tip is less extended than it could be.
if(_frac < _extension) {
// Correct the extension value for no intersection.
// Compute the distance of the mount point from the ground plane.
double a = - _global_ground[3] + launchbar_pos[0]*_global_ground[0]
+ launchbar_pos[1]*_global_ground[1]
+ launchbar_pos[2]*_global_ground[2];
if(a < _length) {
float ang = Math::asin(a/_length);
_frac = (ang - _up_ang)/(_down_ang - _up_ang);
} else
// FIXME: this will jump
_frac = _extension;
}
// Recompute the launchbar tip.
float llb_mount[3];
getTipPosition(llb_mount);
// The launchbar tip in global coordinates.
s->posLocalToGlobal(llb_mount, launchbar_pos);
double end[2][3]; float vel[2][3];
float dist = g_cb->getCatapult(launchbar_pos, end, vel);
// Work around a problem of flightgear returning totally screwed up
// scenery when switching views.
if (1e3 < dist)
return;
// Compute the positions of the catapult start and endpoints in the
// local coordiante system
float lend[2][3];
s->posGlobalToLocal(end[0], lend[0]);
s->posGlobalToLocal(end[1], lend[1]);
// Transform the velocities of the endpoints to the
// local coordinate sytem.
float lvel[2][3];
s->velGlobalToLocal(vel[0], lvel[0]);
s->velGlobalToLocal(vel[1], lvel[1]);
// Compute the position of the launchbar tip relative to the cat.
float tip_pos_on_cat = getPercentPosOnCat(llb_mount, 0.0, lend);
float llbtip[3], lvlbtip[3];
getPosOnCat(tip_pos_on_cat, llbtip, lvlbtip, lend, lvel);
// Compute the direction from the launchbar mount at the gear
// to the lauchbar mount on the cat.
float llbdir[3];
Math::sub3(llbtip, _launchbar_mount, llbdir);
float lblen = Math::mag3(llbdir);
Math::mul3(1.0/lblen, llbdir, llbdir);
// Check if we are near enough to the cat.
if (_state == Unmounted && dist < 0.5) {
// croase approximation for the velocity of the launchbar.
// Might be sufficient because arresting at the cat makes only
// sense when the aircraft does not rotate much.
float lv_mount[3];
float tmp[3];
float lrot[3], lv[3];
Math::vmul33(s->orient, s->rot, lrot);
Math::vmul33(s->orient, s->v, lv);
body->pointVelocity(llb_mount, lrot, tmp);
Math::sub3(tmp, lvlbtip, lv_mount);
Math::add3(lv, lv_mount, lv_mount);
// We cannot arrest at the cat if we move too fast wrt the cat.
if (0.2 < Math::mag3(lv_mount))
return;
// Compute the position of the holdback mount relative to the cat.
double dd[2][3]; float fd[2][3]; double ghldbkpos[3];
s->posLocalToGlobal(_holdback_mount, ghldbkpos);
float hbdist = g_cb->getCatapult(ghldbkpos, dd, fd);
float offset = -Math::sqrt(_holdback_length*_holdback_length - hbdist*hbdist);
_pos_on_cat = getPercentPosOnCat(_holdback_mount, offset, lend);
// We cannot arrest if we are not at the start of the cat.
if (_pos_on_cat < 0.0 || 0.2 < _pos_on_cat)
return;
// Now we are arrested at the cat.
// The force is applied at the next step.
_state = Arrested;
return;
}
// Get the actual distance from the holdback to its mountpoint
// on the cat. If it is longer than the holdback apply a force.
float lhldbk_cmount[3]; float lvhldbk_cmount[3];
getPosOnCat(_pos_on_cat, lhldbk_cmount, lvhldbk_cmount, lend, lvel);
// Compute the direction of holdback.
float lhldbkdir[3];
Math::sub3(lhldbk_cmount, _holdback_mount, lhldbkdir);
float hldbklen = Math::mag3(lhldbkdir);
Math::mul3(1/hldbklen, lhldbkdir, lhldbkdir);
if (_state == Arrested) {
// Now apply a constant tension from the catapult over the launchbar.
Math::mul3(2.0, llbdir, _force);
// If the distance from the holdback mount at the aircraft to the
// holdback mount on the cat is larger than the holdback length itself,
// the holdback applies a force to the gear.
if (_holdback_length < hldbklen) {
// croase approximation for the velocity of the holdback mount
// at the gear.
// Might be sufficient because arresting at the cat makes only
// sense when the aircraft does not rotate much.
float lvhldbk_gmount[3];
float lrot[3], lv[3];
Math::vmul33(s->orient, s->rot, lrot);
Math::vmul33(s->orient, s->v, lv);
body->pointVelocity(_holdback_mount, lrot, lvhldbk_gmount);
Math::add3(lv, lvhldbk_gmount, lvhldbk_gmount);
// The velocity of the holdback mount at the gear wrt the
// holdback mount at the cat.
float lvhldbk[3];
Math::sub3(lvhldbk_gmount, lvhldbk_cmount, lvhldbk);
// The spring force the holdback will apply to the gear
float tmp[3];
Math::mul3(1e1*(hldbklen - _holdback_length), lhldbkdir, tmp);
Math::add3(tmp, _force, _force);
// The damping force here ...
Math::mul3(2e0, lvhldbk, tmp);
Math::sub3(_force, tmp, _force);
}
if (_launch_cmd)
_state = Launch;
}
if (_state == Launch) {
// Now apply a constant tension from the catapult over the launchbar.
Math::mul3(25.0, llbdir, _force);
if (1.0 < dist)
_state = Unmounted;
}
// Scale by the mass. That keeps the stiffness in reasonable bounds.
float mass = body->getTotalMass();
Math::mul3(mass, _force, _force);
}
}; // namespace yasim