1
0
Fork 0
flightgear/src/Radio/radio.cxx
James Turner f2d6b76b13 Portability: Fix compile errors on MSVC (cmath)
From Scott (xDraconian)
2015-03-24 11:11:42 -05:00

1026 lines
35 KiB
C++

// radio.cxx -- implementation of FGRadio
// Class to manage radio propagation using the ITM model
// Written by Adrian Musceac YO8RZZ, started August 2011.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <cmath>
#include <stdlib.h>
#include <deque>
#include "radio.hxx"
#include <simgear/scene/material/mat.hxx>
#include <Scenery/scenery.hxx>
#include <boost/scoped_array.hpp>
#define WITH_POINT_TO_POINT 1
#include "itm.cpp"
FGRadioTransmission::FGRadioTransmission() {
_receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
/** AM transmitter power in dBm.
* Typical output powers for ATC ground equipment, VHF-UHF:
* 40 dBm - 10 W (ground, clearance)
* 44 dBm - 20 W (tower)
* 47 dBm - 50 W (center, sectors)
* 50 dBm - 100 W (center, sectors)
* 53 dBm - 200 W (sectors, on directional arrays)
**/
_transmitter_power = 43.0;
_tx_antenna_height = 2.0; // TX antenna height above ground level
_rx_antenna_height = 2.0; // RX antenna height above ground level
_rx_antenna_gain = 1.0; // maximum antenna gain expressed in dBi
_tx_antenna_gain = 1.0;
_rx_line_losses = 2.0; // to be configured for each station
_tx_line_losses = 2.0;
_polarization = 1; // default vertical
_propagation_model = 2;
_root_node = fgGetNode("sim/radio", true);
_terrain_sampling_distance = _root_node->getDoubleValue("sampling-distance", 90.0); // regular SRTM is 90 meters
}
FGRadioTransmission::~FGRadioTransmission()
{
}
double FGRadioTransmission::getFrequency(int radio) {
double freq = 118.0;
switch (radio) {
case 1:
freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
break;
case 2:
freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz");
break;
default:
freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz");
}
return freq;
}
void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
}
double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
// typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
// vor/loc typical sensitivity between -107 and -101 dBm
// glideslope sensitivity between -85 and -81 dBm
if ( _propagation_model == 1) {
return LOS_calculate_attenuation(tx_pos, freq, 1);
}
else if ( _propagation_model == 2) {
return ITM_calculate_attenuation(tx_pos, freq, 1);
}
return -1;
}
double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
// these properties should be set by an instrument
_receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
_transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
_polarization = _root_node->getIntValue("station[0]/polarization", 1);
_tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
_rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
_tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
_rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8); // by default stay in the ham 2 meter band
double comm1 = getFrequency(1);
double comm2 = getFrequency(2);
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
return -1;
}
double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
return signal;
}
void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
// adjust some default parameters in case the ATC code does not set them
if(ground_to_air == 1) {
_transmitter_power += 4.0;
_tx_antenna_height += 30.0;
_tx_antenna_gain += 2.0;
}
double comm1 = getFrequency(1);
double comm2 = getFrequency(2);
if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) {
return;
}
else {
if ( _propagation_model == 0) { // skip propagation routines entirely
fgSetString("/sim/messages/atc", text.c_str());
}
else if ( _propagation_model == 1 ) { // Use free-space, round earth
double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
if (signal <= 0.0) {
return;
}
else {
fgSetString("/sim/messages/atc", text.c_str());
}
}
else if ( _propagation_model == 2 ) { // Use ITM propagation model
double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
if (signal <= 0.0) {
return;
}
if ((signal > 0.0) && (signal < 12.0)) {
/** for low SNR values need a way to make the conversation
* hard to understand but audible
* in the real world, the receiver AGC fails to capture the slope
* and the signal, due to being amplitude modulated, decreases volume after demodulation
* the workaround below is more akin to what would happen on a FM transmission
* therefore the correct way would be to work on the volume
**/
/*
string hash_noise = " ";
int reps = (int) (fabs(floor(signal - 11.0)) * 2);
int t_size = text.size();
for (int n = 1; n <= reps; ++n) {
int pos = rand() % (t_size -1);
text.replace(pos,1, hash_noise);
}
*/
//double volume = (fabs(signal - 12.0) / 12);
//double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
//fgSetDouble("/sim/sound/voices/voice/volume", volume);
fgSetString("/sim/messages/atc", text.c_str());
//fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
}
else {
fgSetString("/sim/messages/atc", text.c_str());
}
}
}
}
double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
if((freq < 40.0) || (freq > 20000.0)) // frequency out of recommended range
return -1;
/** ITM default parameters
TODO: take them from tile materials (especially for sea)?
**/
double eps_dielect=15.0;
double sgm_conductivity = 0.005;
double eno = 301.0;
double frq_mhz = freq;
int radio_climate = 5; // continental temperate
int pol= _polarization;
double conf = 0.90; // 90% of situations and time, take into account speed
double rel = 0.90;
double dbloss;
char strmode[150];
int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter
double horizons[2];
int errnum;
double clutter_loss = 0.0; // loss due to vegetation and urban
double tx_pow = _transmitter_power;
double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
double signal = 0.0;
double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;
double signal_strength = tx_pow - _rx_line_losses - _tx_line_losses + ant_gain;
double tx_erp = dbm_to_watt(tx_pow + _tx_antenna_gain - _tx_line_losses);
FGScenery * scenery = globals->get_scenery();
double own_lat = fgGetDouble("/position/latitude-deg");
double own_lon = fgGetDouble("/position/longitude-deg");
double own_alt_ft = fgGetDouble("/position/altitude-ft");
double own_heading = fgGetDouble("/orientation/heading-deg");
double own_alt= own_alt_ft * SG_FEET_TO_METER;
SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M );
SGGeoc center = SGGeoc::fromGeod( max_own_pos );
SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
double sender_alt_ft,sender_alt;
double transmitter_height=0.0;
double receiver_height=0.0;
SGGeod sender_pos = pos;
sender_alt_ft = sender_pos.getElevationFt();
sender_alt = sender_alt_ft * SG_FEET_TO_METER;
SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M );
SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
double point_distance= _terrain_sampling_distance;
double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
double probe_distance = 0.0;
/** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
if (distance_m > 300000)
return -1.0;
/** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
if (own_alt > 8000) {
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
SG_LOG(SG_GENERAL, SG_BULK,
"ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation");
//cerr << "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl;
signal = link_budget - dbloss;
return signal;
}
int max_points = (int)floor(distance_m / point_distance);
//double delta_last = fmod(distance_m, point_distance);
deque<double> elevations;
deque<string*> materials;
double elevation_under_pilot = 0.0;
if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
receiver_height = own_alt - elevation_under_pilot;
}
double elevation_under_sender = 0.0;
if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) {
transmitter_height = sender_alt - elevation_under_sender;
}
else {
transmitter_height = sender_alt;
}
transmitter_height += _tx_antenna_height;
receiver_height += _rx_antenna_height;
//cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
_root_node->setDoubleValue("station[0]/rx-height", receiver_height);
_root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
_root_node->setDoubleValue("station[0]/distance", distance_m / 1000);
unsigned int e_size = (deque<unsigned>::size_type)max_points;
while (elevations.size() <= e_size) {
probe_distance += point_distance;
SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance ));
const simgear::BVHMaterial *material = 0;
double elevation_m = 0.0;
if (scenery->get_elevation_m( probe, elevation_m, &material )) {
const SGMaterial *mat;
mat = dynamic_cast<const SGMaterial*>(material);
if((transmission_type == 3) || (transmission_type == 4)) {
elevations.push_back(elevation_m);
if(mat) {
const std::vector<string> mat_names = mat->get_names();
string* name = new string(mat_names[0]);
materials.push_back(name);
}
else {
string* no_material = new string("None");
materials.push_back(no_material);
}
}
else {
elevations.push_front(elevation_m);
if(mat) {
const std::vector<string> mat_names = mat->get_names();
string* name = new string(mat_names[0]);
materials.push_front(name);
}
else {
string* no_material = new string("None");
materials.push_front(no_material);
}
}
}
else {
if((transmission_type == 3) || (transmission_type == 4)) {
elevations.push_back(0.0);
string* no_material = new string("None");
materials.push_back(no_material);
}
else {
string* no_material = new string("None");
elevations.push_front(0.0);
materials.push_front(no_material);
}
}
}
if((transmission_type == 3) || (transmission_type == 4)) {
elevations.push_front(elevation_under_pilot);
//if (delta_last > (point_distance / 2) ) // only add last point if it's farther than half point_distance
elevations.push_back(elevation_under_sender);
}
else {
elevations.push_back(elevation_under_pilot);
//if (delta_last > (point_distance / 2) )
elevations.push_front(elevation_under_sender);
}
double num_points= (double)elevations.size();
elevations.push_front(point_distance);
elevations.push_front(num_points -1);
int size = elevations.size();
boost::scoped_array<double> itm_elev( new double[size] );
for(int i=0;i<size;i++) {
itm_elev[i]=elevations[i];
}
if((transmission_type == 3) || (transmission_type == 4)) {
// the sender and receiver roles are switched
ITM::point_to_point(itm_elev.get(), receiver_height, transmitter_height,
eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
}
else {
ITM::point_to_point(itm_elev.get(), transmitter_height, receiver_height,
eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
if( _root_node->getBoolValue( "use-clutter-attenuation", false ) )
calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
}
double pol_loss = 0.0;
// TODO: remove this check after we check a bit the axis calculations in this function
if (_polarization == 1) {
pol_loss = polarization_loss();
}
//SG_LOG(SG_GENERAL, SG_BULK,
// "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
//cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
_root_node->setDoubleValue("station[0]/link-budget", link_budget);
_root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
_root_node->setStringValue("station[0]/prop-mode", strmode);
_root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
_root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
//if (errnum == 4) // if parameters are outside sane values for lrprop, bail out fast
// return -1;
// temporary, keep this antenna radiation pattern code here
double tx_pattern_gain = 0.0;
double rx_pattern_gain = 0.0;
double sender_heading = 270.0; // due West
double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
double tx_elev_angle = 0.0 - rx_elev_angle;
if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
FGRadioAntenna* TX_antenna;
TX_antenna = new FGRadioAntenna("Plot2");
TX_antenna->set_heading(sender_heading);
TX_antenna->set_elevation_angle(0);
tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
delete TX_antenna;
}
if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
FGRadioAntenna* RX_antenna;
RX_antenna = new FGRadioAntenna("Plot2");
RX_antenna->set_heading(own_heading);
RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
delete RX_antenna;
}
signal = link_budget - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain;
double signal_strength_dbm = signal_strength - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain;
double field_strength_uV = dbm_to_microvolt(signal_strength_dbm);
_root_node->setDoubleValue("station[0]/signal-dbm", signal_strength_dbm);
_root_node->setDoubleValue("station[0]/field-strength-uV", field_strength_uV);
_root_node->setDoubleValue("station[0]/signal", signal);
_root_node->setDoubleValue("station[0]/tx-erp", tx_erp);
//_root_node->setDoubleValue("station[0]/tx-pattern-gain", tx_pattern_gain);
//_root_node->setDoubleValue("station[0]/rx-pattern-gain", rx_pattern_gain);
for (unsigned i =0; i < materials.size(); i++) {
delete materials[i];
}
return signal;
}
void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string*> &materials,
double transmitter_height, double receiver_height, int p_mode,
double horizons[], double &clutter_loss) {
double distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
unsigned mat_size = materials.size();
if (p_mode == 0) { // LOS: take each point and see how clutter height affects first Fresnel zone
int mat = 0;
int j=1;
for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
double clutter_height = 0.0; // mean clutter height for a certain terrain type
double clutter_density = 0.0; // percent of reflected wave
if((unsigned)mat >= mat_size) { //this tends to happen when the model interferes with the antenna (obstructs)
//cerr << "Array index out of bounds 0-0: " << mat << " size: " << mat_size << endl;
break;
}
get_material_properties(materials[mat], clutter_height, clutter_density);
double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
// First Fresnel radius
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / ( distance_m * freq / 1000) );
if (frs_rad <= 0.0) { //this tends to happen when the model interferes with the antenna (obstructs)
//cerr << "Frs rad 0-0: " << frs_rad << endl;
continue;
}
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
double d1 = j * itm_elev[1];
if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
d1 = (itm_elev[0] - j) * itm_elev[1];
}
double ray_height = (grad * d1) + min_elev;
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
double intrusion = fabs(clearance);
if (clearance >= 0) {
// no losses
}
else if (clearance < 0 && (intrusion < clutter_height)) {
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
}
else if (clearance < 0 && (intrusion > clutter_height)) {
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
}
else {
// no losses
}
j++;
mat++;
}
}
else if (p_mode == 1) { // diffraction
if (horizons[1] == 0.0) { // single horizon: same as above, except pass twice using the highest point
int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m );
int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m );
//cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
int last = 1;
/** perform the first pass */
int mat = 0;
int j=1;
for (int k=3;k < num_points_1st + 2;k++) {
if (num_points_1st < 1)
break;
double clutter_height = 0.0; // mean clutter height for a certain terrain type
double clutter_density = 0.0; // percent of reflected wave
if((unsigned)mat >= mat_size) {
//cerr << "Array index out of bounds 1-1: " << mat << " size: " << mat_size << endl;
break;
}
get_material_properties(materials[mat], clutter_height, clutter_density);
double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
// First Fresnel radius
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
if (frs_rad <= 0.0) {
//cerr << "Frs rad 1-1: " << frs_rad << endl;
continue;
}
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
double d1 = j * itm_elev[1];
if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
d1 = (num_points_1st - j) * itm_elev[1];
}
double ray_height = (grad * d1) + min_elev;
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
double intrusion = fabs(clearance);
if (clearance >= 0) {
// no losses
}
else if (clearance < 0 && (intrusion < clutter_height)) {
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
}
else if (clearance < 0 && (intrusion > clutter_height)) {
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
}
else {
// no losses
}
j++;
mat++;
last = k;
}
/** and the second pass */
mat +=1;
j =1; // first point is diffraction edge, 2nd the RX elevation
for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
if (num_points_2nd < 1)
break;
double clutter_height = 0.0; // mean clutter height for a certain terrain type
double clutter_density = 0.0; // percent of reflected wave
if((unsigned)mat >= mat_size) {
//cerr << "Array index out of bounds 1-2: " << mat << " size: " << mat_size << endl;
break;
}
get_material_properties(materials[mat], clutter_height, clutter_density);
double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
// First Fresnel radius
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / ( num_points_2nd * itm_elev[1] * freq / 1000) );
if (frs_rad <= 0.0) {
//cerr << "Frs rad 1-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
continue;
}
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
double d1 = j * itm_elev[1];
if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
d1 = (num_points_2nd - j) * itm_elev[1];
}
double ray_height = (grad * d1) + min_elev;
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
double intrusion = fabs(clearance);
if (clearance >= 0) {
// no losses
}
else if (clearance < 0 && (intrusion < clutter_height)) {
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
}
else if (clearance < 0 && (intrusion > clutter_height)) {
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
}
else {
// no losses
}
j++;
mat++;
}
}
else { // double horizon: same as single horizon, except there are 3 segments
int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m );
int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m );
int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd;
//cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl;
//cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
int last = 1;
/** perform the first pass */
int mat = 0;
int j=1; // first point is TX elevation, 2nd is obstruction elevation
for (int k=3;k < num_points_1st +2;k++) {
if (num_points_1st < 1)
break;
double clutter_height = 0.0; // mean clutter height for a certain terrain type
double clutter_density = 0.0; // percent of reflected wave
if((unsigned)mat >= mat_size) {
//cerr << "Array index out of bounds 2-1: " << mat << " size: " << mat_size << endl;
break;
}
get_material_properties(materials[mat], clutter_height, clutter_density);
double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
// First Fresnel radius
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
if (frs_rad <= 0.0) {
//cerr << "Frs rad 2-1: " << frs_rad << " numpoints1 " << num_points_1st << " j: " << j << endl;
continue;
}
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
double d1 = j * itm_elev[1];
if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
d1 = (num_points_1st - j) * itm_elev[1];
}
double ray_height = (grad * d1) + min_elev;
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
double intrusion = fabs(clearance);
if (clearance >= 0) {
// no losses
}
else if (clearance < 0 && (intrusion < clutter_height)) {
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
}
else if (clearance < 0 && (intrusion > clutter_height)) {
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
}
else {
// no losses
}
j++;
mat++;
last = k;
}
mat +=1;
/** and the second pass */
int last2=1;
j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
if (num_points_2nd < 1)
break;
double clutter_height = 0.0; // mean clutter height for a certain terrain type
double clutter_density = 0.0; // percent of reflected wave
if((unsigned)mat >= mat_size) {
//cerr << "Array index out of bounds 2-2: " << mat << " size: " << mat_size << endl;
break;
}
get_material_properties(materials[mat], clutter_height, clutter_density);
double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
// First Fresnel radius
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / ( num_points_2nd * itm_elev[1] * freq / 1000) );
if (frs_rad <= 0.0) {
//cerr << "Frs rad 2-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl;
continue;
}
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
double d1 = j * itm_elev[1];
if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) {
d1 = (num_points_2nd - j) * itm_elev[1];
}
double ray_height = (grad * d1) + min_elev;
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
double intrusion = fabs(clearance);
if (clearance >= 0) {
// no losses
}
else if (clearance < 0 && (intrusion < clutter_height)) {
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
}
else if (clearance < 0 && (intrusion > clutter_height)) {
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
}
else {
// no losses
}
j++;
mat++;
last2 = k;
}
/** third and final pass */
mat +=1;
j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
if (num_points_3rd < 1)
break;
double clutter_height = 0.0; // mean clutter height for a certain terrain type
double clutter_density = 0.0; // percent of reflected wave
if((unsigned)mat >= mat_size) {
//cerr << "Array index out of bounds 2-3: " << mat << " size: " << mat_size << endl;
break;
}
get_material_properties(materials[mat], clutter_height, clutter_density);
double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
// First Fresnel radius
double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / ( num_points_3rd * itm_elev[1] * freq / 1000) );
if (frs_rad <= 0.0) {
//cerr << "Frs rad 2-3: " << frs_rad << " numpoints3 " << num_points_3rd << " j: " << j << endl;
continue;
}
//double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3
double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
double d1 = j * itm_elev[1];
if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
d1 = (num_points_3rd - j) * itm_elev[1];
}
double ray_height = (grad * d1) + min_elev;
double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;
double intrusion = fabs(clearance);
if (clearance >= 0) {
// no losses
}
else if (clearance < 0 && (intrusion < clutter_height)) {
clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
}
else if (clearance < 0 && (intrusion > clutter_height)) {
clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
}
else {
// no losses
}
j++;
mat++;
}
}
}
else if (p_mode == 2) { // troposcatter: ignore ground clutter for now... maybe do something with weather
clutter_loss = 0.0;
}
}
void FGRadioTransmission::get_material_properties(string* mat_name, double &height, double &density) {
if(!mat_name)
return;
if(*mat_name == "Landmass") {
height = 15.0;
density = 0.2;
}
else if(*mat_name == "SomeSort") {
height = 15.0;
density = 0.2;
}
else if(*mat_name == "Island") {
height = 15.0;
density = 0.2;
}
else if(*mat_name == "Default") {
height = 15.0;
density = 0.2;
}
else if(*mat_name == "EvergreenBroadCover") {
height = 20.0;
density = 0.2;
}
else if(*mat_name == "EvergreenForest") {
height = 20.0;
density = 0.2;
}
else if(*mat_name == "DeciduousBroadCover") {
height = 15.0;
density = 0.3;
}
else if(*mat_name == "DeciduousForest") {
height = 15.0;
density = 0.3;
}
else if(*mat_name == "MixedForestCover") {
height = 20.0;
density = 0.25;
}
else if(*mat_name == "MixedForest") {
height = 15.0;
density = 0.25;
}
else if(*mat_name == "RainForest") {
height = 25.0;
density = 0.55;
}
else if(*mat_name == "EvergreenNeedleCover") {
height = 15.0;
density = 0.2;
}
else if(*mat_name == "WoodedTundraCover") {
height = 5.0;
density = 0.15;
}
else if(*mat_name == "DeciduousNeedleCover") {
height = 5.0;
density = 0.2;
}
else if(*mat_name == "ScrubCover") {
height = 3.0;
density = 0.15;
}
else if(*mat_name == "BuiltUpCover") {
height = 30.0;
density = 0.7;
}
else if(*mat_name == "Urban") {
height = 30.0;
density = 0.7;
}
else if(*mat_name == "Construction") {
height = 30.0;
density = 0.7;
}
else if(*mat_name == "Industrial") {
height = 30.0;
density = 0.7;
}
else if(*mat_name == "Port") {
height = 30.0;
density = 0.7;
}
else if(*mat_name == "Town") {
height = 10.0;
density = 0.5;
}
else if(*mat_name == "SubUrban") {
height = 10.0;
density = 0.5;
}
else if(*mat_name == "CropWoodCover") {
height = 10.0;
density = 0.1;
}
else if(*mat_name == "CropWood") {
height = 10.0;
density = 0.1;
}
else if(*mat_name == "AgroForest") {
height = 10.0;
density = 0.1;
}
else {
height = 0.0;
density = 0.0;
}
}
double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
double frq_mhz = freq;
double dbloss;
double tx_pow = _transmitter_power;
double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
double signal = 0.0;
double sender_alt_ft,sender_alt;
double transmitter_height=0.0;
double receiver_height=0.0;
double own_lat = fgGetDouble("/position/latitude-deg");
double own_lon = fgGetDouble("/position/longitude-deg");
double own_alt_ft = fgGetDouble("/position/altitude-ft");
double own_alt= own_alt_ft * SG_FEET_TO_METER;
double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;
//cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt );
SGGeod sender_pos = pos;
sender_alt_ft = sender_pos.getElevationFt();
sender_alt = sender_alt_ft * SG_FEET_TO_METER;
receiver_height = own_alt;
transmitter_height = sender_alt;
double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
transmitter_height += _tx_antenna_height;
receiver_height += _rx_antenna_height;
/** radio horizon calculation with wave bending k=4/3 */
double receiver_horizon = 4.12 * sqrt(receiver_height);
double transmitter_horizon = 4.12 * sqrt(transmitter_height);
double total_horizon = receiver_horizon + transmitter_horizon;
if (distance_m > total_horizon) {
return -1;
}
double pol_loss = 0.0;
if (_polarization == 1) {
pol_loss = polarization_loss();
}
// free-space loss (distance calculation should be changed)
dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
signal = link_budget - dbloss + pol_loss;
//cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
return signal;
}
/*** calculate loss due to polarization mismatch
* this function is only reliable for vertical polarization
* due to the V-shape of horizontally polarized antennas
***/
double FGRadioTransmission::polarization_loss() {
double theta_deg;
double roll = fgGetDouble("/orientation/roll-deg");
if (fabs(roll) > 85.0)
roll = 85.0;
double pitch = fgGetDouble("/orientation/pitch-deg");
if (fabs(pitch) > 85.0)
pitch = 85.0;
double theta = fabs( atan( sqrt(
pow(tan(roll * SGD_DEGREES_TO_RADIANS), 2) +
pow(tan(pitch * SGD_DEGREES_TO_RADIANS), 2) )) * SGD_RADIANS_TO_DEGREES);
if (_polarization == 0)
theta_deg = 90.0 - theta;
else
theta_deg = theta;
if (theta_deg > 85.0) // we don't want to converge into infinity
theta_deg = 85.0;
double loss = 10 * log10( pow(cos(theta_deg * SGD_DEGREES_TO_RADIANS), 2) );
//cerr << "Polarization loss: " << loss << " dBm " << endl;
return loss;
}
double FGRadioTransmission::watt_to_dbm(double power_watt) {
return 10 * log10(1000 * power_watt); // returns dbm
}
double FGRadioTransmission::dbm_to_watt(double dbm) {
return exp( (dbm-30) * log(10.0) / 10.0); // returns Watts
}
double FGRadioTransmission::dbm_to_microvolt(double dbm) {
return sqrt(dbm_to_watt(dbm) * 50) * 1000000; // returns microvolts
}