// radio.cxx -- implementation of FGRadio // Class to manage radio propagation using the ITM model // Written by Adrian Musceac YO8RZZ, started August 2011. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <cmath> #include <stdlib.h> #include <deque> #include "radio.hxx" #include <simgear/scene/material/mat.hxx> #include <Scenery/scenery.hxx> #include <boost/scoped_array.hpp> #define WITH_POINT_TO_POINT 1 #include "itm.cpp" FGRadioTransmission::FGRadioTransmission() { _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less /** AM transmitter power in dBm. * Typical output powers for ATC ground equipment, VHF-UHF: * 40 dBm - 10 W (ground, clearance) * 44 dBm - 20 W (tower) * 47 dBm - 50 W (center, sectors) * 50 dBm - 100 W (center, sectors) * 53 dBm - 200 W (sectors, on directional arrays) **/ _transmitter_power = 43.0; _tx_antenna_height = 2.0; // TX antenna height above ground level _rx_antenna_height = 2.0; // RX antenna height above ground level _rx_antenna_gain = 1.0; // maximum antenna gain expressed in dBi _tx_antenna_gain = 1.0; _rx_line_losses = 2.0; // to be configured for each station _tx_line_losses = 2.0; _polarization = 1; // default vertical _propagation_model = 2; _root_node = fgGetNode("sim/radio", true); _terrain_sampling_distance = _root_node->getDoubleValue("sampling-distance", 90.0); // regular SRTM is 90 meters } FGRadioTransmission::~FGRadioTransmission() { } double FGRadioTransmission::getFrequency(int radio) { double freq = 118.0; switch (radio) { case 1: freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz"); break; case 2: freq = fgGetDouble("/instrumentation/comm[1]/frequencies/selected-mhz"); break; default: freq = fgGetDouble("/instrumentation/comm[0]/frequencies/selected-mhz"); } return freq; } void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) { } double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) { // typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm // vor/loc typical sensitivity between -107 and -101 dBm // glideslope sensitivity between -85 and -81 dBm if ( _propagation_model == 1) { return LOS_calculate_attenuation(tx_pos, freq, 1); } else if ( _propagation_model == 2) { return ITM_calculate_attenuation(tx_pos, freq, 1); } return -1; } double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) { // these properties should be set by an instrument _receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity); _transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power)); _polarization = _root_node->getIntValue("station[0]/polarization", 1); _tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0); _rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0); _tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0); _rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0); double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8); // by default stay in the ham 2 meter band double comm1 = getFrequency(1); double comm2 = getFrequency(2); if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) { return -1; } double signal = ITM_calculate_attenuation(tx_pos, freq, 1); return signal; } void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) { // adjust some default parameters in case the ATC code does not set them if(ground_to_air == 1) { _transmitter_power += 4.0; _tx_antenna_height += 30.0; _tx_antenna_gain += 2.0; } double comm1 = getFrequency(1); double comm2 = getFrequency(2); if ( !(fabs(freq - comm1) <= 0.0001) && !(fabs(freq - comm2) <= 0.0001) ) { return; } else { if ( _propagation_model == 0) { // skip propagation routines entirely fgSetString("/sim/messages/atc", text.c_str()); } else if ( _propagation_model == 1 ) { // Use free-space, round earth double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air); if (signal <= 0.0) { return; } else { fgSetString("/sim/messages/atc", text.c_str()); } } else if ( _propagation_model == 2 ) { // Use ITM propagation model double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air); if (signal <= 0.0) { return; } if ((signal > 0.0) && (signal < 12.0)) { /** for low SNR values need a way to make the conversation * hard to understand but audible * in the real world, the receiver AGC fails to capture the slope * and the signal, due to being amplitude modulated, decreases volume after demodulation * the workaround below is more akin to what would happen on a FM transmission * therefore the correct way would be to work on the volume **/ /* string hash_noise = " "; int reps = (int) (fabs(floor(signal - 11.0)) * 2); int t_size = text.size(); for (int n = 1; n <= reps; ++n) { int pos = rand() % (t_size -1); text.replace(pos,1, hash_noise); } */ //double volume = (fabs(signal - 12.0) / 12); //double old_volume = fgGetDouble("/sim/sound/voices/voice/volume"); //fgSetDouble("/sim/sound/voices/voice/volume", volume); fgSetString("/sim/messages/atc", text.c_str()); //fgSetDouble("/sim/sound/voices/voice/volume", old_volume); } else { fgSetString("/sim/messages/atc", text.c_str()); } } } } double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) { if((freq < 40.0) || (freq > 20000.0)) // frequency out of recommended range return -1; /** ITM default parameters TODO: take them from tile materials (especially for sea)? **/ double eps_dielect=15.0; double sgm_conductivity = 0.005; double eno = 301.0; double frq_mhz = freq; int radio_climate = 5; // continental temperate int pol= _polarization; double conf = 0.90; // 90% of situations and time, take into account speed double rel = 0.90; double dbloss; char strmode[150]; int p_mode = 0; // propgation mode selector: 0 LOS, 1 diffraction dominant, 2 troposcatter double horizons[2]; int errnum; double clutter_loss = 0.0; // loss due to vegetation and urban double tx_pow = _transmitter_power; double ant_gain = _rx_antenna_gain + _tx_antenna_gain; double signal = 0.0; double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain; double signal_strength = tx_pow - _rx_line_losses - _tx_line_losses + ant_gain; double tx_erp = dbm_to_watt(tx_pow + _tx_antenna_gain - _tx_line_losses); FGScenery * scenery = globals->get_scenery(); double own_lat = fgGetDouble("/position/latitude-deg"); double own_lon = fgGetDouble("/position/longitude-deg"); double own_alt_ft = fgGetDouble("/position/altitude-ft"); double own_heading = fgGetDouble("/orientation/heading-deg"); double own_alt= own_alt_ft * SG_FEET_TO_METER; SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt ); SGGeod max_own_pos = SGGeod::fromDegM( own_lon, own_lat, SG_MAX_ELEVATION_M ); SGGeoc center = SGGeoc::fromGeod( max_own_pos ); SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos ); double sender_alt_ft,sender_alt; double transmitter_height=0.0; double receiver_height=0.0; SGGeod sender_pos = pos; sender_alt_ft = sender_pos.getElevationFt(); sender_alt = sender_alt_ft * SG_FEET_TO_METER; SGGeod max_sender_pos = SGGeod::fromGeodM( pos, SG_MAX_ELEVATION_M ); SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos ); double point_distance= _terrain_sampling_distance; double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c); double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c); double distance_m = SGGeodesy::distanceM(own_pos, sender_pos); double probe_distance = 0.0; /** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */ if (distance_m > 300000) return -1.0; /** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */ if (own_alt > 8000) { dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55; SG_LOG(SG_GENERAL, SG_BULK, "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation"); //cerr << "ITM Free-space mode:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, free-space attenuation" << endl; signal = link_budget - dbloss; return signal; } int max_points = (int)floor(distance_m / point_distance); //double delta_last = fmod(distance_m, point_distance); deque<double> elevations; deque<string*> materials; double elevation_under_pilot = 0.0; if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) { receiver_height = own_alt - elevation_under_pilot; } double elevation_under_sender = 0.0; if (scenery->get_elevation_m( max_sender_pos, elevation_under_sender, NULL )) { transmitter_height = sender_alt - elevation_under_sender; } else { transmitter_height = sender_alt; } transmitter_height += _tx_antenna_height; receiver_height += _rx_antenna_height; //cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl; _root_node->setDoubleValue("station[0]/rx-height", receiver_height); _root_node->setDoubleValue("station[0]/tx-height", transmitter_height); _root_node->setDoubleValue("station[0]/distance", distance_m / 1000); unsigned int e_size = (deque<unsigned>::size_type)max_points; while (elevations.size() <= e_size) { probe_distance += point_distance; SGGeod probe = SGGeod::fromGeoc(center.advanceRadM( course, probe_distance )); const simgear::BVHMaterial *material = 0; double elevation_m = 0.0; if (scenery->get_elevation_m( probe, elevation_m, &material )) { const SGMaterial *mat; mat = dynamic_cast<const SGMaterial*>(material); if((transmission_type == 3) || (transmission_type == 4)) { elevations.push_back(elevation_m); if(mat) { const std::vector<string> mat_names = mat->get_names(); string* name = new string(mat_names[0]); materials.push_back(name); } else { string* no_material = new string("None"); materials.push_back(no_material); } } else { elevations.push_front(elevation_m); if(mat) { const std::vector<string> mat_names = mat->get_names(); string* name = new string(mat_names[0]); materials.push_front(name); } else { string* no_material = new string("None"); materials.push_front(no_material); } } } else { if((transmission_type == 3) || (transmission_type == 4)) { elevations.push_back(0.0); string* no_material = new string("None"); materials.push_back(no_material); } else { string* no_material = new string("None"); elevations.push_front(0.0); materials.push_front(no_material); } } } if((transmission_type == 3) || (transmission_type == 4)) { elevations.push_front(elevation_under_pilot); //if (delta_last > (point_distance / 2) ) // only add last point if it's farther than half point_distance elevations.push_back(elevation_under_sender); } else { elevations.push_back(elevation_under_pilot); //if (delta_last > (point_distance / 2) ) elevations.push_front(elevation_under_sender); } double num_points= (double)elevations.size(); elevations.push_front(point_distance); elevations.push_front(num_points -1); int size = elevations.size(); boost::scoped_array<double> itm_elev( new double[size] ); for(int i=0;i<size;i++) { itm_elev[i]=elevations[i]; } if((transmission_type == 3) || (transmission_type == 4)) { // the sender and receiver roles are switched ITM::point_to_point(itm_elev.get(), receiver_height, transmitter_height, eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate, pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum); if( _root_node->getBoolValue( "use-clutter-attenuation", false ) ) calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss); } else { ITM::point_to_point(itm_elev.get(), transmitter_height, receiver_height, eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate, pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum); if( _root_node->getBoolValue( "use-clutter-attenuation", false ) ) calculate_clutter_loss(frq_mhz, itm_elev.get(), materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss); } double pol_loss = 0.0; // TODO: remove this check after we check a bit the axis calculations in this function if (_polarization == 1) { pol_loss = polarization_loss(); } //SG_LOG(SG_GENERAL, SG_BULK, // "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum); //cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl; _root_node->setDoubleValue("station[0]/link-budget", link_budget); _root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss); _root_node->setStringValue("station[0]/prop-mode", strmode); _root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss); _root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss); //if (errnum == 4) // if parameters are outside sane values for lrprop, bail out fast // return -1; // temporary, keep this antenna radiation pattern code here double tx_pattern_gain = 0.0; double rx_pattern_gain = 0.0; double sender_heading = 270.0; // due West double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES; double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES; double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES; double tx_elev_angle = 0.0 - rx_elev_angle; if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) { FGRadioAntenna* TX_antenna; TX_antenna = new FGRadioAntenna("Plot2"); TX_antenna->set_heading(sender_heading); TX_antenna->set_elevation_angle(0); tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle); delete TX_antenna; } if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) { FGRadioAntenna* RX_antenna; RX_antenna = new FGRadioAntenna("Plot2"); RX_antenna->set_heading(own_heading); RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg")); rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle); delete RX_antenna; } signal = link_budget - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain; double signal_strength_dbm = signal_strength - dbloss - clutter_loss + pol_loss + rx_pattern_gain + tx_pattern_gain; double field_strength_uV = dbm_to_microvolt(signal_strength_dbm); _root_node->setDoubleValue("station[0]/signal-dbm", signal_strength_dbm); _root_node->setDoubleValue("station[0]/field-strength-uV", field_strength_uV); _root_node->setDoubleValue("station[0]/signal", signal); _root_node->setDoubleValue("station[0]/tx-erp", tx_erp); //_root_node->setDoubleValue("station[0]/tx-pattern-gain", tx_pattern_gain); //_root_node->setDoubleValue("station[0]/rx-pattern-gain", rx_pattern_gain); for (unsigned i =0; i < materials.size(); i++) { delete materials[i]; } return signal; } void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string*> &materials, double transmitter_height, double receiver_height, int p_mode, double horizons[], double &clutter_loss) { double distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points unsigned mat_size = materials.size(); if (p_mode == 0) { // LOS: take each point and see how clutter height affects first Fresnel zone int mat = 0; int j=1; for (int k=3;k < (int)(itm_elev[0]) + 2;k++) { double clutter_height = 0.0; // mean clutter height for a certain terrain type double clutter_density = 0.0; // percent of reflected wave if((unsigned)mat >= mat_size) { //this tends to happen when the model interferes with the antenna (obstructs) //cerr << "Array index out of bounds 0-0: " << mat << " size: " << mat_size << endl; break; } get_material_properties(materials[mat], clutter_height, clutter_density); double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m; // First Fresnel radius double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / ( distance_m * freq / 1000) ); if (frs_rad <= 0.0) { //this tends to happen when the model interferes with the antenna (obstructs) //cerr << "Frs rad 0-0: " << frs_rad << endl; continue; } //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height); double d1 = j * itm_elev[1]; if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { d1 = (itm_elev[0] - j) * itm_elev[1]; } double ray_height = (grad * d1) + min_elev; double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10; double intrusion = fabs(clearance); if (clearance >= 0) { // no losses } else if (clearance < 0 && (intrusion < clutter_height)) { clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100); } else if (clearance < 0 && (intrusion > clutter_height)) { clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100); } else { // no losses } j++; mat++; } } else if (p_mode == 1) { // diffraction if (horizons[1] == 0.0) { // single horizon: same as above, except pass twice using the highest point int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m ); int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m ); //cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl; int last = 1; /** perform the first pass */ int mat = 0; int j=1; for (int k=3;k < num_points_1st + 2;k++) { if (num_points_1st < 1) break; double clutter_height = 0.0; // mean clutter height for a certain terrain type double clutter_density = 0.0; // percent of reflected wave if((unsigned)mat >= mat_size) { //cerr << "Array index out of bounds 1-1: " << mat << " size: " << mat_size << endl; break; } get_material_properties(materials[mat], clutter_height, clutter_density); double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m; // First Fresnel radius double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) ); if (frs_rad <= 0.0) { //cerr << "Frs rad 1-1: " << frs_rad << endl; continue; } //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height); double d1 = j * itm_elev[1]; if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) { d1 = (num_points_1st - j) * itm_elev[1]; } double ray_height = (grad * d1) + min_elev; double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10; double intrusion = fabs(clearance); if (clearance >= 0) { // no losses } else if (clearance < 0 && (intrusion < clutter_height)) { clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100); } else if (clearance < 0 && (intrusion > clutter_height)) { clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100); } else { // no losses } j++; mat++; last = k; } /** and the second pass */ mat +=1; j =1; // first point is diffraction edge, 2nd the RX elevation for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) { if (num_points_2nd < 1) break; double clutter_height = 0.0; // mean clutter height for a certain terrain type double clutter_density = 0.0; // percent of reflected wave if((unsigned)mat >= mat_size) { //cerr << "Array index out of bounds 1-2: " << mat << " size: " << mat_size << endl; break; } get_material_properties(materials[mat], clutter_height, clutter_density); double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m; // First Fresnel radius double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / ( num_points_2nd * itm_elev[1] * freq / 1000) ); if (frs_rad <= 0.0) { //cerr << "Frs rad 1-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl; continue; } //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3 double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height); double d1 = j * itm_elev[1]; if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { d1 = (num_points_2nd - j) * itm_elev[1]; } double ray_height = (grad * d1) + min_elev; double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10; double intrusion = fabs(clearance); if (clearance >= 0) { // no losses } else if (clearance < 0 && (intrusion < clutter_height)) { clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100); } else if (clearance < 0 && (intrusion > clutter_height)) { clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100); } else { // no losses } j++; mat++; } } else { // double horizon: same as single horizon, except there are 3 segments int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m ); int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m ); int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd; //cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl; //cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl; int last = 1; /** perform the first pass */ int mat = 0; int j=1; // first point is TX elevation, 2nd is obstruction elevation for (int k=3;k < num_points_1st +2;k++) { if (num_points_1st < 1) break; double clutter_height = 0.0; // mean clutter height for a certain terrain type double clutter_density = 0.0; // percent of reflected wave if((unsigned)mat >= mat_size) { //cerr << "Array index out of bounds 2-1: " << mat << " size: " << mat_size << endl; break; } get_material_properties(materials[mat], clutter_height, clutter_density); double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m; // First Fresnel radius double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) ); if (frs_rad <= 0.0) { //cerr << "Frs rad 2-1: " << frs_rad << " numpoints1 " << num_points_1st << " j: " << j << endl; continue; } //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3 double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height); double d1 = j * itm_elev[1]; if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) { d1 = (num_points_1st - j) * itm_elev[1]; } double ray_height = (grad * d1) + min_elev; double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10; double intrusion = fabs(clearance); if (clearance >= 0) { // no losses } else if (clearance < 0 && (intrusion < clutter_height)) { clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100); } else if (clearance < 0 && (intrusion > clutter_height)) { clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100); } else { // no losses } j++; mat++; last = k; } mat +=1; /** and the second pass */ int last2=1; j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) { if (num_points_2nd < 1) break; double clutter_height = 0.0; // mean clutter height for a certain terrain type double clutter_density = 0.0; // percent of reflected wave if((unsigned)mat >= mat_size) { //cerr << "Array index out of bounds 2-2: " << mat << " size: " << mat_size << endl; break; } get_material_properties(materials[mat], clutter_height, clutter_density); double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m; // First Fresnel radius double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / ( num_points_2nd * itm_elev[1] * freq / 1000) ); if (frs_rad <= 0.0) { //cerr << "Frs rad 2-2: " << frs_rad << " numpoints2 " << num_points_2nd << " j: " << j << endl; continue; } //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3 double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height); double d1 = j * itm_elev[1]; if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) { d1 = (num_points_2nd - j) * itm_elev[1]; } double ray_height = (grad * d1) + min_elev; double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10; double intrusion = fabs(clearance); if (clearance >= 0) { // no losses } else if (clearance < 0 && (intrusion < clutter_height)) { clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100); } else if (clearance < 0 && (intrusion > clutter_height)) { clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100); } else { // no losses } j++; mat++; last2 = k; } /** third and final pass */ mat +=1; j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) { if (num_points_3rd < 1) break; double clutter_height = 0.0; // mean clutter height for a certain terrain type double clutter_density = 0.0; // percent of reflected wave if((unsigned)mat >= mat_size) { //cerr << "Array index out of bounds 2-3: " << mat << " size: " << mat_size << endl; break; } get_material_properties(materials[mat], clutter_height, clutter_density); double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m; // First Fresnel radius double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / ( num_points_3rd * itm_elev[1] * freq / 1000) ); if (frs_rad <= 0.0) { //cerr << "Frs rad 2-3: " << frs_rad << " numpoints3 " << num_points_3rd << " j: " << j << endl; continue; } //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 ); // K=4/3 double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height); double d1 = j * itm_elev[1]; if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { d1 = (num_points_3rd - j) * itm_elev[1]; } double ray_height = (grad * d1) + min_elev; double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10; double intrusion = fabs(clearance); if (clearance >= 0) { // no losses } else if (clearance < 0 && (intrusion < clutter_height)) { clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100); } else if (clearance < 0 && (intrusion > clutter_height)) { clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100); } else { // no losses } j++; mat++; } } } else if (p_mode == 2) { // troposcatter: ignore ground clutter for now... maybe do something with weather clutter_loss = 0.0; } } void FGRadioTransmission::get_material_properties(string* mat_name, double &height, double &density) { if(!mat_name) return; if(*mat_name == "Landmass") { height = 15.0; density = 0.2; } else if(*mat_name == "SomeSort") { height = 15.0; density = 0.2; } else if(*mat_name == "Island") { height = 15.0; density = 0.2; } else if(*mat_name == "Default") { height = 15.0; density = 0.2; } else if(*mat_name == "EvergreenBroadCover") { height = 20.0; density = 0.2; } else if(*mat_name == "EvergreenForest") { height = 20.0; density = 0.2; } else if(*mat_name == "DeciduousBroadCover") { height = 15.0; density = 0.3; } else if(*mat_name == "DeciduousForest") { height = 15.0; density = 0.3; } else if(*mat_name == "MixedForestCover") { height = 20.0; density = 0.25; } else if(*mat_name == "MixedForest") { height = 15.0; density = 0.25; } else if(*mat_name == "RainForest") { height = 25.0; density = 0.55; } else if(*mat_name == "EvergreenNeedleCover") { height = 15.0; density = 0.2; } else if(*mat_name == "WoodedTundraCover") { height = 5.0; density = 0.15; } else if(*mat_name == "DeciduousNeedleCover") { height = 5.0; density = 0.2; } else if(*mat_name == "ScrubCover") { height = 3.0; density = 0.15; } else if(*mat_name == "BuiltUpCover") { height = 30.0; density = 0.7; } else if(*mat_name == "Urban") { height = 30.0; density = 0.7; } else if(*mat_name == "Construction") { height = 30.0; density = 0.7; } else if(*mat_name == "Industrial") { height = 30.0; density = 0.7; } else if(*mat_name == "Port") { height = 30.0; density = 0.7; } else if(*mat_name == "Town") { height = 10.0; density = 0.5; } else if(*mat_name == "SubUrban") { height = 10.0; density = 0.5; } else if(*mat_name == "CropWoodCover") { height = 10.0; density = 0.1; } else if(*mat_name == "CropWood") { height = 10.0; density = 0.1; } else if(*mat_name == "AgroForest") { height = 10.0; density = 0.1; } else { height = 0.0; density = 0.0; } } double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) { double frq_mhz = freq; double dbloss; double tx_pow = _transmitter_power; double ant_gain = _rx_antenna_gain + _tx_antenna_gain; double signal = 0.0; double sender_alt_ft,sender_alt; double transmitter_height=0.0; double receiver_height=0.0; double own_lat = fgGetDouble("/position/latitude-deg"); double own_lon = fgGetDouble("/position/longitude-deg"); double own_alt_ft = fgGetDouble("/position/altitude-ft"); double own_alt= own_alt_ft * SG_FEET_TO_METER; double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain; //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl; SGGeod own_pos = SGGeod::fromDegM( own_lon, own_lat, own_alt ); SGGeod sender_pos = pos; sender_alt_ft = sender_pos.getElevationFt(); sender_alt = sender_alt_ft * SG_FEET_TO_METER; receiver_height = own_alt; transmitter_height = sender_alt; double distance_m = SGGeodesy::distanceM(own_pos, sender_pos); transmitter_height += _tx_antenna_height; receiver_height += _rx_antenna_height; /** radio horizon calculation with wave bending k=4/3 */ double receiver_horizon = 4.12 * sqrt(receiver_height); double transmitter_horizon = 4.12 * sqrt(transmitter_height); double total_horizon = receiver_horizon + transmitter_horizon; if (distance_m > total_horizon) { return -1; } double pol_loss = 0.0; if (_polarization == 1) { pol_loss = polarization_loss(); } // free-space loss (distance calculation should be changed) dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55; signal = link_budget - dbloss + pol_loss; //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl; return signal; } /*** calculate loss due to polarization mismatch * this function is only reliable for vertical polarization * due to the V-shape of horizontally polarized antennas ***/ double FGRadioTransmission::polarization_loss() { double theta_deg; double roll = fgGetDouble("/orientation/roll-deg"); if (fabs(roll) > 85.0) roll = 85.0; double pitch = fgGetDouble("/orientation/pitch-deg"); if (fabs(pitch) > 85.0) pitch = 85.0; double theta = fabs( atan( sqrt( pow(tan(roll * SGD_DEGREES_TO_RADIANS), 2) + pow(tan(pitch * SGD_DEGREES_TO_RADIANS), 2) )) * SGD_RADIANS_TO_DEGREES); if (_polarization == 0) theta_deg = 90.0 - theta; else theta_deg = theta; if (theta_deg > 85.0) // we don't want to converge into infinity theta_deg = 85.0; double loss = 10 * log10( pow(cos(theta_deg * SGD_DEGREES_TO_RADIANS), 2) ); //cerr << "Polarization loss: " << loss << " dBm " << endl; return loss; } double FGRadioTransmission::watt_to_dbm(double power_watt) { return 10 * log10(1000 * power_watt); // returns dbm } double FGRadioTransmission::dbm_to_watt(double dbm) { return exp( (dbm-30) * log(10.0) / 10.0); // returns Watts } double FGRadioTransmission::dbm_to_microvolt(double dbm) { return sqrt(dbm_to_watt(dbm) * 50) * 1000000; // returns microvolts }