1
0
Fork 0
flightgear/src/Navaids/positioned.cxx
2008-09-08 19:25:45 +00:00

439 lines
12 KiB
C++

// positioned.cxx - base class for objects which are positioned
//
// Copyright (C) 2008 James Turner
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <map>
#include <set>
#include <algorithm>
#include <simgear/math/sg_geodesy.hxx>
#include "positioned.hxx"
typedef std::multimap<std::string, FGPositioned*> NamedPositionedIndex;
typedef std::pair<NamedPositionedIndex::const_iterator, NamedPositionedIndex::const_iterator> NamedIndexRange;
/**
* Order positioned elements by type, then pointer address. This allows us to
* use range searches (lower_ and upper_bound) to grab items of a particular
* type out of bucket efficently.
*/
class OrderByType
{
public:
bool operator()(const FGPositioned* a, const FGPositioned* b) const
{
if (a->type() == b->type()) return a < b;
return a->type() < b->type();
}
};
typedef std::set<FGPositioned*, OrderByType> BucketEntry;
typedef std::map<long int, BucketEntry> SpatialPositionedIndex;
static NamedPositionedIndex global_namedIndex;
static SpatialPositionedIndex global_spatialIndex;
SpatialPositionedIndex::iterator
bucketEntryForPositioned(FGPositioned* aPos)
{
int bucketIndex = aPos->bucket().gen_index();
SpatialPositionedIndex::iterator it = global_spatialIndex.find(bucketIndex);
if (it != global_spatialIndex.end()) {
return it;
}
// create a new BucketEntry
return global_spatialIndex.insert(it, std::make_pair(bucketIndex, BucketEntry()));
}
static void
addToIndices(FGPositioned* aPos)
{
assert(aPos);
global_namedIndex.insert(global_namedIndex.begin(),
std::make_pair(aPos->ident(), aPos));
SpatialPositionedIndex::iterator it = bucketEntryForPositioned(aPos);
it->second.insert(aPos);
}
static void
removeFromIndices(FGPositioned* aPos)
{
assert(aPos);
NamedPositionedIndex::iterator it = global_namedIndex.find(aPos->ident());
while (it != global_namedIndex.end() && (it->first == aPos->ident())) {
if (it->second == aPos) {
global_namedIndex.erase(it);
break;
}
++it;
}
SpatialPositionedIndex::iterator sit = bucketEntryForPositioned(aPos);
sit->second.erase(aPos);
}
static void
spatialFilterInBucket(const SGBucket& aBucket, const FGPositioned::Filter& aFilter, FGPositioned::List& aResult)
{
SpatialPositionedIndex::const_iterator it;
it = global_spatialIndex.find(aBucket.gen_index());
if (it == global_spatialIndex.end()) {
return;
}
BucketEntry::const_iterator l = it->second.begin();
BucketEntry::const_iterator u = it->second.end();
for ( ; l != u; ++l) {
if (aFilter(*l)) {
aResult.push_back(*l);
}
}
}
static void
spatialFind(const SGGeod& aPos, double aRange,
const FGPositioned::Filter& aFilter, FGPositioned::List& aResult)
{
SGBucket buck(aPos);
double lat = aPos.getLatitudeDeg(),
lon = aPos.getLongitudeDeg();
int bx = (int)( aRange*SG_NM_TO_METER / buck.get_width_m() / 2);
int by = (int)( aRange*SG_NM_TO_METER / buck.get_height_m() / 2 );
// loop over bucket range
for ( int i=-bx; i<=bx; i++) {
for ( int j=-by; j<=by; j++) {
spatialFilterInBucket(sgBucketOffset(lon, lat, i, j), aFilter, aResult);
} // of j-iteration
} // of i-iteration
}
class LowerLimitOfType
{
public:
bool operator()(const FGPositioned* a, const FGPositioned::Type b) const
{
return a->type() < b;
}
bool operator()(const FGPositioned::Type a, const FGPositioned* b) const
{
return a < b->type();
}
};
static void
spatialFindTyped(const SGGeod& aPos, double aRange, FGPositioned::Type aLower, FGPositioned::Type aUpper, FGPositioned::List& aResult)
{
SGBucket buck(aPos);
double lat = aPos.getLatitudeDeg(),
lon = aPos.getLongitudeDeg();
int bx = (int)( aRange*SG_NM_TO_METER / buck.get_width_m() / 2);
int by = (int)( aRange*SG_NM_TO_METER / buck.get_height_m() / 2 );
// loop over bucket range
for ( int i=-bx; i<=bx; i++) {
for ( int j=-by; j<=by; j++) {
buck = sgBucketOffset(lon, lat, i, j);
SpatialPositionedIndex::const_iterator it;
it = global_spatialIndex.find(buck.gen_index());
if (it == global_spatialIndex.end()) {
continue;
}
BucketEntry::const_iterator l = std::lower_bound(it->second.begin(), it->second.end(), aLower, LowerLimitOfType());
BucketEntry::const_iterator u = std::upper_bound(l, it->second.end(), aUpper, LowerLimitOfType());
for ( ; l != u; ++l) {
aResult.push_back(*l);
}
} // of j-iteration
} // of i-iteration
}
/**
* Cartesian range predicate. Note that for really long ranges, might need to
* to use geodetic / geocentric distance instead
*/
class RangePredictate
{
public:
RangePredictate(const Point3D& aOrigin, double aRange) :
mOrigin(aOrigin),
mRangeSquared(aRange * aRange)
{ ; }
bool operator()(const FGPositionedRef& aPos)
{
Point3D p(Point3D::fromSGGeod(aPos->geod()));
bool ok = (mOrigin.distance3Dsquared(p) > mRangeSquared);
if (ok) {
double x = sqrt(mOrigin.distance3Dsquared(p) - mRangeSquared);
x *= SG_METER_TO_NM;
//std::cout << "pos:" << aPos->ident() << " failed range check by " << x << std::endl;
}
return ok;
}
private:
Point3D mOrigin;
double mRangeSquared;
};
static void
filterListByRange(const SGGeod& aPos, double aRange, FGPositioned::List& aResult)
{
RangePredictate pred(Point3D::fromSGGeod(aPos), aRange * SG_NM_TO_METER);
FGPositioned::List::iterator newEnd;
newEnd = std::remove_if(aResult.begin(), aResult.end(), pred);
aResult.erase(newEnd, aResult.end());
}
class DistanceOrdering
{
public:
DistanceOrdering(const SGGeod& aPos) :
mPos(Point3D::fromSGGeod(aPos))
{ }
bool operator()(const FGPositionedRef& a, const FGPositionedRef& b) const
{
return mPos.distance3Dsquared(Point3D::fromSGGeod(a->geod())) <
mPos.distance3Dsquared(Point3D::fromSGGeod(b->geod()));
}
private:
Point3D mPos;
};
static void
sortByDistance(const SGGeod& aPos, FGPositioned::List& aResult)
{
std::sort(aResult.begin(), aResult.end(), DistanceOrdering(aPos));
}
static FGPositionedRef
namedFindClosestTyped(const std::string& aIdent, const SGGeod& aOrigin,
FGPositioned::Type aLower, FGPositioned::Type aUpper)
{
NamedIndexRange range = global_namedIndex.equal_range(aIdent);
if (range.first == range.second) return NULL;
// common case, only one result. looks a bit ugly because these are
// sequential iterators, not random-access ones
NamedPositionedIndex::const_iterator check = range.first;
if (++check == range.second) {
// excellent, only one match in the range - all we care about is the type
FGPositioned::Type ty = range.first->second->type();
if ((ty < aLower) || (ty > aUpper)) {
return NULL; // type check failed
}
return range.first->second;
} // of short-circuit logic for single-element range
// multiple matches, we need to actually check the distance to each one
double minDist = HUGE_VAL;
FGPositionedRef result;
Point3D origin(Point3D::fromSGGeod(aOrigin));
for (; range.first != range.second; ++range.first) {
// filter by type
FGPositioned::Type ty = range.first->second->type();
if ((ty < aLower) || (ty > aUpper)) {
continue;
}
// find distance
Point3D p(Point3D::fromSGGeod(range.first->second->geod()));
double ds = origin.distance3Dsquared(p);
if (ds < minDist) {
minDist = ds;
result = range.first->second;
}
}
return result;
}
static FGPositioned::List
spatialGetClosest(const SGGeod& aPos, unsigned int aN, double aCutoffNm, const FGPositioned::Filter& aFilter)
{
FGPositioned::List result;
int radius = 1; // start at 1, radius 0 is handled explicitly
SGBucket buck;
double lat = aPos.getLatitudeDeg(),
lon = aPos.getLongitudeDeg();
// final cutoff is in metres, and scaled to account for testing the corners
// of the 'box' instead of the centre of each edge
double cutoffM = aCutoffNm * SG_NM_TO_METER * 1.5;
// base case, simplifes loop to do it seperately here
spatialFilterInBucket(sgBucketOffset(lon, lat, 0, 0), aFilter, result);
for (;result.size() < aN; ++radius) {
// cutoff check
double az1, az2, d1, d2;
SGGeodesy::inverse(aPos, sgBucketOffset(lon, lat, -radius, -radius).get_center(), az1, az2, d1);
SGGeodesy::inverse(aPos, sgBucketOffset(lon, lat, radius, radius).get_center(), az1, az2, d2);
if ((d1 > cutoffM) && (d2 > cutoffM)) {
//std::cerr << "spatialGetClosest terminating due to range cutoff" << std::endl;
break;
}
FGPositioned::List hits;
for ( int i=-radius; i<=radius; i++) {
spatialFilterInBucket(sgBucketOffset(lon, lat, i, -radius), aFilter, hits);
spatialFilterInBucket(sgBucketOffset(lon, lat, -radius, i), aFilter, hits);
spatialFilterInBucket(sgBucketOffset(lon, lat, i, radius), aFilter, hits);
spatialFilterInBucket(sgBucketOffset(lon, lat, radius, i), aFilter, hits);
}
result.insert(result.end(), hits.begin(), hits.end()); // append
} // of outer loop
if (result.size() > aN) {
result.resize(aN); // truncate at requested number of matches
}
sortByDistance(aPos, result);
return result;
}
///////////////////////////////////////////////////////////////////////////////
FGPositioned::FGPositioned() :
mType(INVALID)
{
}
FGPositioned::FGPositioned(Type ty, const std::string& aIdent, double aLat, double aLon, double aElev) :
mType(ty),
mIdent(aIdent),
mPosition(SGGeod::fromDegFt(aLon, aLat, aElev))
{
//addToIndices(this);
//SGReferenced::get(this); // hold an owning ref, for the moment
}
FGPositioned::FGPositioned(Type ty, const std::string& aIdent, const SGGeod& aPos) :
mType(ty),
mIdent(aIdent),
mPosition(aPos)
{
//addToIndices(this);
//SGReferenced::get(this); // hold an owning ref, for the moment
}
FGPositioned::~FGPositioned()
{
//std::cout << "~FGPositioned:" << mIdent << std::endl;
//removeFromIndices(this);
}
SGBucket
FGPositioned::bucket() const
{
return SGBucket(mPosition);
}
const char* FGPositioned::nameForType(Type aTy)
{
switch (aTy) {
case FIX: return "fix";
case VOR: return "VOR";
case NDB: return "NDB";
case OM: return "outer-marker";
case MM: return "middle-marker";
case IM: return "inner-marker";
case AIRPORT: return "airport";
case HELIPORT: return "heliport";
case SEAPORT: return "seaport";
case WAYPOINT: return "waypoint";
default:
return "unknown";
}
}
///////////////////////////////////////////////////////////////////////////////
// search / query functions
FGPositionedRef
FGPositioned::findClosestWithIdent(const std::string& aIdent, double aLat, double aLon)
{
return findClosestWithIdent(aIdent, SGGeod::fromDeg(aLon, aLat));
}
FGPositionedRef
FGPositioned::findClosestWithIdent(const std::string& aIdent, const SGGeod& aPos)
{
return namedFindClosestTyped(aIdent, aPos, INVALID, LAST_TYPE);
}
FGPositioned::List
FGPositioned::findWithinRangeByType(const SGGeod& aPos, double aRangeNm, Type aTy)
{
List result;
spatialFindTyped(aPos, aRangeNm, aTy, aTy, result);
filterListByRange(aPos, aRangeNm, result);
return result;
}
FGPositioned::List
FGPositioned::findWithinRange(const SGGeod& aPos, double aRangeNm, const Filter& aFilter)
{
List result;
spatialFind(aPos, aRangeNm, aFilter, result);
filterListByRange(aPos, aRangeNm, result);
return result;
}
FGPositioned::List
FGPositioned::findAllWithIdent(const std::string& aIdent)
{
List result;
NamedIndexRange range = global_namedIndex.equal_range(aIdent);
for (; range.first != range.second; ++range.first) {
result.push_back(range.first->second);
}
return result;
}
FGPositioned::List
FGPositioned::findClosestN(const SGGeod& aPos, unsigned int aN, double aCutoffNm, const Filter& aFilter)
{
return spatialGetClosest(aPos, aN, aCutoffNm, aFilter);
}