154917477f
on RPM via a model developed by Vivian Meazza. Add a "boost" output to the property tree. Fix a bug where MP would be reported "before" the wastegate clamping.
929 lines
31 KiB
C++
929 lines
31 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <Main/fg_props.hxx>
|
|
|
|
#include "Math.hpp"
|
|
#include "Jet.hpp"
|
|
#include "SimpleJet.hpp"
|
|
#include "Gear.hpp"
|
|
#include "Hook.hpp"
|
|
#include "Launchbar.hpp"
|
|
#include "Atmosphere.hpp"
|
|
#include "PropEngine.hpp"
|
|
#include "Propeller.hpp"
|
|
#include "PistonEngine.hpp"
|
|
#include "TurbineEngine.hpp"
|
|
#include "Rotor.hpp"
|
|
#include "Rotorpart.hpp"
|
|
#include "Rotorblade.hpp"
|
|
|
|
#include "FGFDM.hpp"
|
|
|
|
namespace yasim {
|
|
|
|
// Some conversion factors
|
|
static const float KTS2MPS = 0.514444444444;
|
|
static const float FT2M = 0.3048;
|
|
static const float DEG2RAD = 0.0174532925199;
|
|
static const float RPM2RAD = 0.10471975512;
|
|
static const float LBS2N = 4.44822;
|
|
static const float LBS2KG = 0.45359237;
|
|
static const float KG2LBS = 2.2046225;
|
|
static const float CM2GALS = 264.172037284;
|
|
static const float HP2W = 745.700;
|
|
static const float INHG2PA = 3386.389;
|
|
static const float K2DEGF = 1.8;
|
|
static const float K2DEGFOFFSET = -459.4;
|
|
static const float CIN2CM = 1.6387064e-5;
|
|
static const float YASIM_PI = 3.14159265358979323846;
|
|
|
|
static const float NM2FTLB = (1/(LBS2N*FT2M));
|
|
|
|
// Stubs, so that this can be compiled without the FlightGear
|
|
// binary. What's the best way to handle this?
|
|
|
|
// float fgGetFloat(char* name, float def) { return 0; }
|
|
// void fgSetFloat(char* name, float val) {}
|
|
|
|
FGFDM::FGFDM()
|
|
{
|
|
_vehicle_radius = 0.0f;
|
|
|
|
_nextEngine = 0;
|
|
|
|
// Map /controls/flight/elevator to the approach elevator control. This
|
|
// should probably be settable, but there are very few aircraft
|
|
// who trim their approaches using things other than elevator.
|
|
_airplane.setElevatorControl(parseAxis("/controls/flight/elevator-trim"));
|
|
|
|
// FIXME: read seed from somewhere?
|
|
int seed = 0;
|
|
_turb = new Turbulence(10, seed);
|
|
}
|
|
|
|
FGFDM::~FGFDM()
|
|
{
|
|
int i;
|
|
for(i=0; i<_axes.size(); i++) {
|
|
AxisRec* a = (AxisRec*)_axes.get(i);
|
|
delete[] a->name;
|
|
delete a;
|
|
}
|
|
for(i=0; i<_thrusters.size(); i++) {
|
|
EngRec* er = (EngRec*)_thrusters.get(i);
|
|
delete[] er->prefix;
|
|
delete er->eng;
|
|
delete er;
|
|
}
|
|
for(i=0; i<_weights.size(); i++) {
|
|
WeightRec* wr = (WeightRec*)_weights.get(i);
|
|
delete[] wr->prop;
|
|
delete wr;
|
|
}
|
|
for(i=0; i<_controlProps.size(); i++)
|
|
delete (PropOut*)_controlProps.get(i);
|
|
}
|
|
|
|
void FGFDM::iterate(float dt)
|
|
{
|
|
getExternalInput(dt);
|
|
_airplane.iterate(dt);
|
|
|
|
// Do fuel stuff (FIXME: should stash SGPropertyNode objects here)
|
|
char buf[256];
|
|
for(int i=0; i<_airplane.numThrusters(); i++) {
|
|
Thruster* t = _airplane.getThruster(i);
|
|
|
|
sprintf(buf, "/engines/engine[%d]/out-of-fuel", i);
|
|
t->setFuelState(!fgGetBool(buf));
|
|
|
|
sprintf(buf, "/engines/engine[%d]/fuel-consumed-lbs", i);
|
|
double consumed = fgGetDouble(buf) + dt * KG2LBS * t->getFuelFlow();
|
|
fgSetDouble(buf, consumed);
|
|
}
|
|
for(int i=0; i<_airplane.numTanks(); i++) {
|
|
sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i);
|
|
_airplane.setFuel(i, LBS2KG * fgGetFloat(buf));
|
|
}
|
|
_airplane.calcFuelWeights();
|
|
|
|
setOutputProperties(dt);
|
|
}
|
|
|
|
Airplane* FGFDM::getAirplane()
|
|
{
|
|
return &_airplane;
|
|
}
|
|
|
|
void FGFDM::init()
|
|
{
|
|
// Allows the user to start with something other than full fuel
|
|
_airplane.setFuelFraction(fgGetFloat("/sim/fuel-fraction", 1));
|
|
|
|
// Read out the resulting fuel state
|
|
char buf[256];
|
|
for(int i=0; i<_airplane.numTanks(); i++) {
|
|
sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i);
|
|
fgSetDouble(buf, _airplane.getFuel(i) * KG2LBS);
|
|
|
|
double density = _airplane.getFuelDensity(i);
|
|
sprintf(buf, "/consumables/fuel/tank[%d]/density-ppg", i);
|
|
fgSetDouble(buf, density * (KG2LBS/CM2GALS));
|
|
|
|
sprintf(buf, "/consumables/fuel/tank[%d]/level-gal_us", i);
|
|
fgSetDouble(buf, _airplane.getFuel(i) * CM2GALS / density);
|
|
|
|
sprintf(buf, "/consumables/fuel/tank[%d]/capacity-gal_us", i);
|
|
fgSetDouble(buf, CM2GALS * _airplane.getTankCapacity(i)/density);
|
|
}
|
|
|
|
// This has a nasty habit of being false at startup. That's not
|
|
// good.
|
|
fgSetBool("/controls/gear/gear-down", true);
|
|
|
|
_airplane.getModel()->setTurbulence(_turb);
|
|
}
|
|
|
|
// Not the worlds safest parser. But it's short & sweet.
|
|
void FGFDM::startElement(const char* name, const XMLAttributes &atts)
|
|
{
|
|
XMLAttributes* a = (XMLAttributes*)&atts;
|
|
float v[3];
|
|
char buf[64];
|
|
|
|
if(eq(name, "airplane")) {
|
|
_airplane.setWeight(attrf(a, "mass") * LBS2KG);
|
|
} else if(eq(name, "approach")) {
|
|
float spd = attrf(a, "speed") * KTS2MPS;
|
|
float alt = attrf(a, "alt", 0) * FT2M;
|
|
float aoa = attrf(a, "aoa", 0) * DEG2RAD;
|
|
_airplane.setApproach(spd, alt, aoa, attrf(a, "fuel", 0.2));
|
|
_cruiseCurr = false;
|
|
} else if(eq(name, "cruise")) {
|
|
float spd = attrf(a, "speed") * KTS2MPS;
|
|
float alt = attrf(a, "alt") * FT2M;
|
|
_airplane.setCruise(spd, alt, attrf(a, "fuel", 0.5));
|
|
_cruiseCurr = true;
|
|
} else if(eq(name, "solve-weight")) {
|
|
int idx = attri(a, "idx");
|
|
float wgt = attrf(a, "weight") * LBS2KG;
|
|
_airplane.addSolutionWeight(!_cruiseCurr, idx, wgt);
|
|
} else if(eq(name, "cockpit")) {
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
_airplane.setPilotPos(v);
|
|
} else if(eq(name, "rotor")) {
|
|
_airplane.addRotor(parseRotor(a, name));
|
|
} else if(eq(name, "wing")) {
|
|
_airplane.setWing(parseWing(a, name));
|
|
} else if(eq(name, "hstab")) {
|
|
_airplane.setTail(parseWing(a, name));
|
|
} else if(eq(name, "vstab") || eq(name, "mstab")) {
|
|
_airplane.addVStab(parseWing(a, name));
|
|
} else if(eq(name, "piston-engine")) {
|
|
parsePistonEngine(a);
|
|
} else if(eq(name, "turbine-engine")) {
|
|
parseTurbineEngine(a);
|
|
} else if(eq(name, "propeller")) {
|
|
parsePropeller(a);
|
|
} else if(eq(name, "thruster")) {
|
|
SimpleJet* j = new SimpleJet();
|
|
_currObj = j;
|
|
v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z");
|
|
j->setPosition(v);
|
|
_airplane.addThruster(j, 0, v);
|
|
v[0] = attrf(a, "vx"); v[1] = attrf(a, "vy"); v[2] = attrf(a, "vz");
|
|
j->setDirection(v);
|
|
j->setThrust(attrf(a, "thrust") * LBS2N);
|
|
} else if(eq(name, "jet")) {
|
|
Jet* j = new Jet();
|
|
_currObj = j;
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
float mass = attrf(a, "mass") * LBS2KG;
|
|
j->setMaxThrust(attrf(a, "thrust") * LBS2N,
|
|
attrf(a, "afterburner", 0) * LBS2N);
|
|
j->setVectorAngle(attrf(a, "rotate", 0) * DEG2RAD);
|
|
j->setReverseThrust(attrf(a, "reverse", 0.2));
|
|
|
|
float n1min = attrf(a, "n1-idle", 55);
|
|
float n1max = attrf(a, "n1-max", 102);
|
|
float n2min = attrf(a, "n2-idle", 73);
|
|
float n2max = attrf(a, "n2-max", 103);
|
|
j->setRPMs(n1min, n1max, n2min, n2max);
|
|
|
|
j->setTSFC(attrf(a, "tsfc", 0.8));
|
|
if(a->hasAttribute("egt")) j->setEGT(attrf(a, "egt"));
|
|
if(a->hasAttribute("epr")) j->setEPR(attrf(a, "epr"));
|
|
if(a->hasAttribute("exhaust-speed"))
|
|
j->setVMax(attrf(a, "exhaust-speed") * KTS2MPS);
|
|
|
|
j->setPosition(v);
|
|
_airplane.addThruster(j, mass, v);
|
|
sprintf(buf, "/engines/engine[%d]", _nextEngine++);
|
|
EngRec* er = new EngRec();
|
|
er->eng = j;
|
|
er->prefix = dup(buf);
|
|
_thrusters.add(er);
|
|
} else if(eq(name, "gear")) {
|
|
Gear* g = new Gear();
|
|
_currObj = g;
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
g->setPosition(v);
|
|
float nrm = Math::mag3(v);
|
|
if (_vehicle_radius < nrm)
|
|
_vehicle_radius = nrm;
|
|
v[0] = 0;
|
|
v[1] = 0;
|
|
v[2] = attrf(a, "compression", 1);
|
|
g->setCompression(v);
|
|
g->setBrake(attrf(a, "skid", 0));
|
|
g->setStaticFriction(attrf(a, "sfric", 0.8));
|
|
g->setDynamicFriction(attrf(a, "dfric", 0.7));
|
|
g->setSpring(attrf(a, "spring", 1));
|
|
g->setDamping(attrf(a, "damp", 1));
|
|
_airplane.addGear(g);
|
|
} else if(eq(name, "hook")) {
|
|
Hook* h = new Hook();
|
|
_currObj = h;
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
h->setPosition(v);
|
|
float length = attrf(a, "length", 1.0);
|
|
h->setLength(length);
|
|
float nrm = length+Math::mag3(v);
|
|
if (_vehicle_radius < nrm)
|
|
_vehicle_radius = nrm;
|
|
h->setDownAngle(attrf(a, "down-angle", 70) * DEG2RAD);
|
|
h->setUpAngle(attrf(a, "up-angle", 0) * DEG2RAD);
|
|
_airplane.addHook(h);
|
|
} else if(eq(name, "launchbar")) {
|
|
Launchbar* l = new Launchbar();
|
|
_currObj = l;
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
l->setLaunchbarMount(v);
|
|
v[0] = attrf(a, "holdback-x", v[0]);
|
|
v[1] = attrf(a, "holdback-y", v[1]);
|
|
v[2] = attrf(a, "holdback-z", v[2]);
|
|
l->setHoldbackMount(v);
|
|
float length = attrf(a, "length", 1.0);
|
|
l->setLength(length);
|
|
l->setDownAngle(attrf(a, "down-angle", 30) * DEG2RAD);
|
|
l->setUpAngle(attrf(a, "up-angle", -30) * DEG2RAD);
|
|
_airplane.addLaunchbar(l);
|
|
} else if(eq(name, "fuselage")) {
|
|
float b[3];
|
|
v[0] = attrf(a, "ax");
|
|
v[1] = attrf(a, "ay");
|
|
v[2] = attrf(a, "az");
|
|
b[0] = attrf(a, "bx");
|
|
b[1] = attrf(a, "by");
|
|
b[2] = attrf(a, "bz");
|
|
float taper = attrf(a, "taper", 1);
|
|
float mid = attrf(a, "midpoint", 0.5);
|
|
_airplane.addFuselage(v, b, attrf(a, "width"), taper, mid);
|
|
} else if(eq(name, "tank")) {
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
float density = 6.0; // gasoline, in lbs/gal
|
|
if(a->hasAttribute("jet")) density = 6.72;
|
|
density *= LBS2KG*CM2GALS;
|
|
_airplane.addTank(v, attrf(a, "capacity") * LBS2KG, density);
|
|
} else if(eq(name, "ballast")) {
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
_airplane.addBallast(v, attrf(a, "mass") * LBS2KG);
|
|
} else if(eq(name, "weight")) {
|
|
parseWeight(a);
|
|
} else if(eq(name, "stall")) {
|
|
Wing* w = (Wing*)_currObj;
|
|
w->setStall(attrf(a, "aoa") * DEG2RAD);
|
|
w->setStallWidth(attrf(a, "width", 2) * DEG2RAD);
|
|
w->setStallPeak(attrf(a, "peak", 1.5));
|
|
} else if(eq(name, "flap0")) {
|
|
((Wing*)_currObj)->setFlap0(attrf(a, "start"), attrf(a, "end"),
|
|
attrf(a, "lift"), attrf(a, "drag"));
|
|
} else if(eq(name, "flap1")) {
|
|
((Wing*)_currObj)->setFlap1(attrf(a, "start"), attrf(a, "end"),
|
|
attrf(a, "lift"), attrf(a, "drag"));
|
|
} else if(eq(name, "slat")) {
|
|
((Wing*)_currObj)->setSlat(attrf(a, "start"), attrf(a, "end"),
|
|
attrf(a, "aoa"), attrf(a, "drag"));
|
|
} else if(eq(name, "spoiler")) {
|
|
((Wing*)_currObj)->setSpoiler(attrf(a, "start"), attrf(a, "end"),
|
|
attrf(a, "lift"), attrf(a, "drag"));
|
|
/* } else if(eq(name, "collective")) {
|
|
((Rotor*)_currObj)->setcollective(attrf(a, "min"), attrf(a, "max"));
|
|
} else if(eq(name, "cyclic")) {
|
|
((Rotor*)_currObj)->setcyclic(attrf(a, "ail"), attrf(a, "ele"));
|
|
*/
|
|
} else if(eq(name, "actionpt")) {
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
((Thruster*)_currObj)->setPosition(v);
|
|
} else if(eq(name, "dir")) {
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
((Thruster*)_currObj)->setDirection(v);
|
|
} else if(eq(name, "control-setting")) {
|
|
// A cruise or approach control setting
|
|
const char* axis = a->getValue("axis");
|
|
float value = attrf(a, "value", 0);
|
|
if(_cruiseCurr)
|
|
_airplane.addCruiseControl(parseAxis(axis), value);
|
|
else
|
|
_airplane.addApproachControl(parseAxis(axis), value);
|
|
} else if(eq(name, "control-input")) {
|
|
|
|
// A mapping of input property to a control
|
|
int axis = parseAxis(a->getValue("axis"));
|
|
int control = parseOutput(a->getValue("control"));
|
|
int opt = 0;
|
|
opt |= a->hasAttribute("split") ? ControlMap::OPT_SPLIT : 0;
|
|
opt |= a->hasAttribute("invert") ? ControlMap::OPT_INVERT : 0;
|
|
opt |= a->hasAttribute("square") ? ControlMap::OPT_SQUARE : 0;
|
|
|
|
ControlMap* cm = _airplane.getControlMap();
|
|
if(a->hasAttribute("src0")) {
|
|
cm->addMapping(axis, control, _currObj, opt,
|
|
attrf(a, "src0"), attrf(a, "src1"),
|
|
attrf(a, "dst0"), attrf(a, "dst1"));
|
|
} else {
|
|
cm->addMapping(axis, control, _currObj, opt);
|
|
}
|
|
} else if(eq(name, "control-output")) {
|
|
// A property output for a control on the current object
|
|
ControlMap* cm = _airplane.getControlMap();
|
|
int type = parseOutput(a->getValue("control"));
|
|
int handle = cm->getOutputHandle(_currObj, type);
|
|
|
|
PropOut* p = new PropOut();
|
|
p->prop = fgGetNode(a->getValue("prop"), true);
|
|
p->handle = handle;
|
|
p->type = type;
|
|
p->left = !(a->hasAttribute("side") &&
|
|
eq("right", a->getValue("side")));
|
|
p->min = attrf(a, "min", cm->rangeMin(type));
|
|
p->max = attrf(a, "max", cm->rangeMax(type));
|
|
_controlProps.add(p);
|
|
|
|
} else if(eq(name, "control-speed")) {
|
|
ControlMap* cm = _airplane.getControlMap();
|
|
int type = parseOutput(a->getValue("control"));
|
|
int handle = cm->getOutputHandle(_currObj, type);
|
|
float time = attrf(a, "transition-time", 0);
|
|
|
|
cm->setTransitionTime(handle, time);
|
|
} else {
|
|
SG_LOG(SG_FLIGHT,SG_ALERT,"Unexpected tag '"
|
|
<< name << "' found in YASim aircraft description");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
void FGFDM::getExternalInput(float dt)
|
|
{
|
|
char buf[256];
|
|
|
|
_turb->setMagnitude(fgGetFloat("/environment/turbulence/magnitude-norm"));
|
|
_turb->update(dt, fgGetFloat("/environment/turbulence/rate-hz"));
|
|
|
|
// The control axes
|
|
ControlMap* cm = _airplane.getControlMap();
|
|
cm->reset();
|
|
int i;
|
|
for(i=0; i<_axes.size(); i++) {
|
|
AxisRec* a = (AxisRec*)_axes.get(i);
|
|
float val = fgGetFloat(a->name, 0);
|
|
cm->setInput(a->handle, val);
|
|
}
|
|
cm->applyControls(dt);
|
|
|
|
// Weights
|
|
for(i=0; i<_weights.size(); i++) {
|
|
WeightRec* wr = (WeightRec*)_weights.get(i);
|
|
_airplane.setWeight(wr->handle, LBS2KG * fgGetFloat(wr->prop));
|
|
}
|
|
|
|
for(i=0; i<_thrusters.size(); i++) {
|
|
EngRec* er = (EngRec*)_thrusters.get(i);
|
|
Thruster* t = er->eng;
|
|
|
|
if(t->getPropEngine()) {
|
|
PropEngine* p = t->getPropEngine();
|
|
sprintf(buf, "%s/rpm", er->prefix);
|
|
p->setOmega(fgGetFloat(buf, 500) * RPM2RAD);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Linearly "seeks" a property by the specified fraction of the way to
|
|
// the target value. Used to emulate "slowly changing" output values.
|
|
static void moveprop(SGPropertyNode* node, const char* prop,
|
|
float target, float frac)
|
|
{
|
|
float val = node->getFloatValue(prop);
|
|
if(frac > 1) frac = 1;
|
|
if(frac < 0) frac = 0;
|
|
val += (target - val) * frac;
|
|
node->setFloatValue(prop, val);
|
|
}
|
|
|
|
void FGFDM::setOutputProperties(float dt)
|
|
{
|
|
// char buf[256];
|
|
int i;
|
|
|
|
float grossWgt = _airplane.getModel()->getBody()->getTotalMass() * KG2LBS;
|
|
fgSetFloat("/yasim/gross-weight-lbs", grossWgt);
|
|
|
|
ControlMap* cm = _airplane.getControlMap();
|
|
for(i=0; i<_controlProps.size(); i++) {
|
|
PropOut* p = (PropOut*)_controlProps.get(i);
|
|
float val = (p->left
|
|
? cm->getOutput(p->handle)
|
|
: cm->getOutputR(p->handle));
|
|
float rmin = cm->rangeMin(p->type);
|
|
float rmax = cm->rangeMax(p->type);
|
|
float frac = (val - rmin) / (rmax - rmin);
|
|
val = frac*(p->max - p->min) + p->min;
|
|
p->prop->setFloatValue(val);
|
|
}
|
|
|
|
for(i=0; i<_airplane.getNumRotors(); i++) {
|
|
Rotor*r=(Rotor*)_airplane.getRotor(i);
|
|
int j = 0;
|
|
float f;
|
|
char b[256];
|
|
while(j = r->getValueforFGSet(j, b, &f))
|
|
if(b[0]) fgSetFloat(b,f);
|
|
|
|
for(j=0; j < r->numRotorparts(); j++) {
|
|
Rotorpart* s = (Rotorpart*)r->getRotorpart(j);
|
|
char *b;
|
|
int k;
|
|
for(k=0; k<2; k++) {
|
|
b=s->getAlphaoutput(k);
|
|
if(b[0]) fgSetFloat(b, s->getAlpha(k));
|
|
}
|
|
}
|
|
for(j=0; j < r->numRotorblades(); j++) {
|
|
Rotorblade* s = (Rotorblade*)r->getRotorblade(j);
|
|
char *b;
|
|
int k;
|
|
for (k=0; k<2; k++) {
|
|
b = s->getAlphaoutput(k);
|
|
if(b[0]) fgSetFloat(b, s->getAlpha(k));
|
|
}
|
|
}
|
|
}
|
|
|
|
float fuelDensity = _airplane.getFuelDensity(0); // HACK
|
|
for(i=0; i<_thrusters.size(); i++) {
|
|
EngRec* er = (EngRec*)_thrusters.get(i);
|
|
Thruster* t = er->eng;
|
|
SGPropertyNode * node = fgGetNode("engines/engine", i, true);
|
|
|
|
// Set: running, cranking, prop-thrust, max-hp, power-pct
|
|
node->setBoolValue("running", t->isRunning());
|
|
node->setBoolValue("cranking", t->isCranking());
|
|
|
|
float tmp[3];
|
|
t->getThrust(tmp);
|
|
float lbs = Math::mag3(tmp) * (KG2LBS/9.8);
|
|
node->setFloatValue("prop-thrust", lbs); // Deprecated name
|
|
node->setFloatValue("thrust-lbs", lbs);
|
|
node->setFloatValue("fuel-flow-gph",
|
|
(t->getFuelFlow()/fuelDensity) * 3600 * CM2GALS);
|
|
|
|
if(t->getPropEngine()) {
|
|
PropEngine* p = t->getPropEngine();
|
|
node->setFloatValue("rpm", p->getOmega() * (1/RPM2RAD));
|
|
node->setFloatValue("torque-ftlb",
|
|
p->getEngine()->getTorque() * NM2FTLB);
|
|
|
|
if(p->getEngine()->isPistonEngine()) {
|
|
PistonEngine* pe = p->getEngine()->isPistonEngine();
|
|
node->setFloatValue("mp-osi", pe->getMP() * (1/INHG2PA));
|
|
node->setFloatValue("mp-inhg", pe->getMP() * (1/INHG2PA));
|
|
node->setFloatValue("egt-degf",
|
|
pe->getEGT() * K2DEGF + K2DEGFOFFSET);
|
|
node->setFloatValue("boost-gauge-inhg",
|
|
pe->getBoost() * (1/INHG2PA));
|
|
} else if(p->getEngine()->isTurbineEngine()) {
|
|
TurbineEngine* te = p->getEngine()->isTurbineEngine();
|
|
node->setFloatValue("n2", te->getN2());
|
|
}
|
|
}
|
|
|
|
if(t->getJet()) {
|
|
Jet* j = t->getJet();
|
|
node->setFloatValue("n1", j->getN1());
|
|
node->setFloatValue("n2", j->getN2());
|
|
node->setFloatValue("epr", j->getEPR());
|
|
node->setFloatValue("egr-degf",
|
|
j->getEGT() * K2DEGF + K2DEGFOFFSET);
|
|
|
|
// These are "unmodeled" values that are still needed for
|
|
// many cockpits. Tie them all to the N1 speed, but
|
|
// normalize the numbers to the range [0:1] so the
|
|
// cockpit code can scale them to the right values.
|
|
float pnorm = j->getPerfNorm();
|
|
moveprop(node, "oilp-norm", pnorm, dt/3); // 3s seek time
|
|
moveprop(node, "oilt-norm", pnorm, dt/30); // 30s
|
|
moveprop(node, "itt-norm", pnorm, dt/1); // 1s
|
|
}
|
|
}
|
|
}
|
|
|
|
Wing* FGFDM::parseWing(XMLAttributes* a, const char* type)
|
|
{
|
|
Wing* w = new Wing();
|
|
|
|
float defDihed = 0;
|
|
if(eq(type, "vstab"))
|
|
defDihed = 90;
|
|
else
|
|
w->setMirror(true);
|
|
|
|
float pos[3];
|
|
pos[0] = attrf(a, "x");
|
|
pos[1] = attrf(a, "y");
|
|
pos[2] = attrf(a, "z");
|
|
w->setBase(pos);
|
|
|
|
w->setLength(attrf(a, "length"));
|
|
w->setChord(attrf(a, "chord"));
|
|
w->setSweep(attrf(a, "sweep", 0) * DEG2RAD);
|
|
w->setTaper(attrf(a, "taper", 1));
|
|
w->setDihedral(attrf(a, "dihedral", defDihed) * DEG2RAD);
|
|
w->setCamber(attrf(a, "camber", 0));
|
|
w->setIncidence(attrf(a, "incidence", 0) * DEG2RAD);
|
|
w->setTwist(attrf(a, "twist", 0) * DEG2RAD);
|
|
|
|
// The 70% is a magic number that sorta kinda seems to match known
|
|
// throttle settings to approach speed.
|
|
w->setInducedDrag(0.7*attrf(a, "idrag", 1));
|
|
|
|
float effect = attrf(a, "effectiveness", 1);
|
|
w->setDragScale(w->getDragScale()*effect);
|
|
|
|
_currObj = w;
|
|
return w;
|
|
}
|
|
|
|
Rotor* FGFDM::parseRotor(XMLAttributes* a, const char* type)
|
|
{
|
|
Rotor* w = new Rotor();
|
|
|
|
// float defDihed = 0;
|
|
|
|
float pos[3];
|
|
pos[0] = attrf(a, "x");
|
|
pos[1] = attrf(a, "y");
|
|
pos[2] = attrf(a, "z");
|
|
w->setBase(pos);
|
|
|
|
float normal[3];
|
|
normal[0] = attrf(a, "nx");
|
|
normal[1] = attrf(a, "ny");
|
|
normal[2] = attrf(a, "nz");
|
|
w->setNormal(normal);
|
|
|
|
float forward[3];
|
|
forward[0] = attrf(a, "fx");
|
|
forward[1] = attrf(a, "fy");
|
|
forward[2] = attrf(a, "fz");
|
|
w->setForward(forward);
|
|
|
|
w->setMaxCyclicail(attrf(a, "maxcyclicail", 7.6));
|
|
w->setMaxCyclicele(attrf(a, "maxcyclicele", 4.94));
|
|
w->setMinCyclicail(attrf(a, "mincyclicail", -7.6));
|
|
w->setMinCyclicele(attrf(a, "mincyclicele", -4.94));
|
|
w->setMaxCollective(attrf(a, "maxcollective", 15.8));
|
|
w->setMinCollective(attrf(a, "mincollective", -0.2));
|
|
w->setDiameter(attrf(a, "diameter", 10.2));
|
|
w->setWeightPerBlade(attrf(a, "weightperblade", 44));
|
|
w->setNumberOfBlades(attrf(a, "numblades", 4));
|
|
w->setRelBladeCenter(attrf(a, "relbladecenter", 0.7));
|
|
w->setDynamic(attrf(a, "dynamic", 0.7));
|
|
w->setDelta3(attrf(a, "delta3", 0));
|
|
w->setDelta(attrf(a, "delta", 0));
|
|
w->setTranslift(attrf(a, "translift", 0.05));
|
|
w->setC2(attrf(a, "dragfactor", 1));
|
|
w->setStepspersecond(attrf(a, "stepspersecond", 120));
|
|
w->setRPM(attrf(a, "rpm", 424));
|
|
w->setRelLenHinge(attrf(a, "rellenflaphinge", 0.07));
|
|
w->setAlpha0((attrf(a, "flap0", -5))*YASIM_PI/180);
|
|
w->setAlphamin((attrf(a, "flapmin", -15))/180*YASIM_PI);
|
|
w->setAlphamax((attrf(a, "flapmax", 15))*YASIM_PI/180);
|
|
w->setAlpha0factor(attrf(a, "flap0factor", 1));
|
|
w->setTeeterdamp(attrf(a,"teeterdamp",.0001));
|
|
w->setMaxteeterdamp(attrf(a,"maxteeterdamp",1000));
|
|
w->setRelLenTeeterHinge(attrf(a,"rellenteeterhinge",0.01));
|
|
void setAlphamin(float f);
|
|
void setAlphamax(float f);
|
|
void setAlpha0factor(float f);
|
|
|
|
if(attrb(a,"ccw"))
|
|
w->setCcw(1);
|
|
|
|
if(a->hasAttribute("name"))
|
|
w->setName(a->getValue("name") );
|
|
if(a->hasAttribute("alphaout0"))
|
|
w->setAlphaoutput(0,a->getValue("alphaout0") );
|
|
if(a->hasAttribute("alphaout1")) w->setAlphaoutput(1,a->getValue("alphaout1") );
|
|
if(a->hasAttribute("alphaout2")) w->setAlphaoutput(2,a->getValue("alphaout2") );
|
|
if(a->hasAttribute("alphaout3")) w->setAlphaoutput(3,a->getValue("alphaout3") );
|
|
if(a->hasAttribute("coneout")) w->setAlphaoutput(4,a->getValue("coneout") );
|
|
if(a->hasAttribute("yawout")) w->setAlphaoutput(5,a->getValue("yawout") );
|
|
if(a->hasAttribute("rollout")) w->setAlphaoutput(6,a->getValue("rollout") );
|
|
|
|
w->setPitchA(attrf(a, "pitch_a", 10));
|
|
w->setPitchB(attrf(a, "pitch_b", 10));
|
|
w->setForceAtPitchA(attrf(a, "forceatpitch_a", 3000));
|
|
w->setPowerAtPitch0(attrf(a, "poweratpitch_0", 300));
|
|
w->setPowerAtPitchB(attrf(a, "poweratpitch_b", 3000));
|
|
if(attrb(a,"notorque"))
|
|
w->setNotorque(1);
|
|
if(attrb(a,"simblades"))
|
|
w->setSimBlades(1);
|
|
|
|
_currObj = w;
|
|
return w;
|
|
}
|
|
|
|
void FGFDM::parsePistonEngine(XMLAttributes* a)
|
|
{
|
|
float engP = attrf(a, "eng-power") * HP2W;
|
|
float engS = attrf(a, "eng-rpm") * RPM2RAD;
|
|
|
|
PistonEngine* eng = new PistonEngine(engP, engS);
|
|
|
|
if(a->hasAttribute("displacement"))
|
|
eng->setDisplacement(attrf(a, "displacement") * CIN2CM);
|
|
|
|
if(a->hasAttribute("compression"))
|
|
eng->setCompression(attrf(a, "compression"));
|
|
|
|
if(a->hasAttribute("turbo-mul")) {
|
|
float mul = attrf(a, "turbo-mul");
|
|
float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA;
|
|
eng->setTurboParams(mul, mp);
|
|
}
|
|
|
|
((PropEngine*)_currObj)->setEngine(eng);
|
|
}
|
|
|
|
void FGFDM::parseTurbineEngine(XMLAttributes* a)
|
|
{
|
|
float power = attrf(a, "eng-power") * HP2W;
|
|
float omega = attrf(a, "eng-rpm") * RPM2RAD;
|
|
float alt = attrf(a, "alt") * FT2M;
|
|
float flatRating = attrf(a, "flat-rating") * HP2W;
|
|
TurbineEngine* eng = new TurbineEngine(power, omega, alt, flatRating);
|
|
|
|
if(a->hasAttribute("n2-low-idle"))
|
|
eng->setN2Range(attrf(a, "n2-low-idle"), attrf(a, "n2-high-idle"),
|
|
attrf(a, "n2-max"));
|
|
|
|
// Nasty units conversion: lbs/hr per hp -> kg/s per watt
|
|
if(a->hasAttribute("bsfc"))
|
|
eng->setFuelConsumption(attrf(a, "bsfc") * (LBS2KG/(3600*HP2W)));
|
|
|
|
((PropEngine*)_currObj)->setEngine(eng);
|
|
}
|
|
|
|
void FGFDM::parsePropeller(XMLAttributes* a)
|
|
{
|
|
// Legacy Handling for the old engines syntax:
|
|
PistonEngine* eng = 0;
|
|
if(a->hasAttribute("eng-power")) {
|
|
SG_LOG(SG_FLIGHT,SG_ALERT, "WARNING: "
|
|
<< "Legacy engine definition in YASim configuration file. "
|
|
<< "Please fix.");
|
|
float engP = attrf(a, "eng-power") * HP2W;
|
|
float engS = attrf(a, "eng-rpm") * RPM2RAD;
|
|
eng = new PistonEngine(engP, engS);
|
|
if(a->hasAttribute("displacement"))
|
|
eng->setDisplacement(attrf(a, "displacement") * CIN2CM);
|
|
if(a->hasAttribute("compression"))
|
|
eng->setCompression(attrf(a, "compression"));
|
|
if(a->hasAttribute("turbo-mul")) {
|
|
float mul = attrf(a, "turbo-mul");
|
|
float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA;
|
|
eng->setTurboParams(mul, mp);
|
|
}
|
|
}
|
|
|
|
// Now parse the actual propeller definition:
|
|
float cg[3];
|
|
cg[0] = attrf(a, "x");
|
|
cg[1] = attrf(a, "y");
|
|
cg[2] = attrf(a, "z");
|
|
float mass = attrf(a, "mass") * LBS2KG;
|
|
float moment = attrf(a, "moment");
|
|
float radius = attrf(a, "radius");
|
|
float speed = attrf(a, "cruise-speed") * KTS2MPS;
|
|
float omega = attrf(a, "cruise-rpm") * RPM2RAD;
|
|
float power = attrf(a, "cruise-power") * HP2W;
|
|
float rho = Atmosphere::getStdDensity(attrf(a, "cruise-alt") * FT2M);
|
|
|
|
Propeller* prop = new Propeller(radius, speed, omega, rho, power);
|
|
PropEngine* thruster = new PropEngine(prop, eng, moment);
|
|
_airplane.addThruster(thruster, mass, cg);
|
|
|
|
if(a->hasAttribute("takeoff-power")) {
|
|
float power0 = attrf(a, "takeoff-power") * HP2W;
|
|
float omega0 = attrf(a, "takeoff-rpm") * RPM2RAD;
|
|
prop->setTakeoff(omega0, power0);
|
|
}
|
|
|
|
if(a->hasAttribute("max-rpm")) {
|
|
float max = attrf(a, "max-rpm") * RPM2RAD;
|
|
float min = attrf(a, "min-rpm") * RPM2RAD;
|
|
thruster->setVariableProp(min, max);
|
|
}
|
|
|
|
if(attrb(a, "contra"))
|
|
thruster->setContraPair(true);
|
|
|
|
if(a->hasAttribute("manual-pitch")) {
|
|
prop->setManualPitch();
|
|
}
|
|
|
|
thruster->setGearRatio(attrf(a, "gear-ratio", 1));
|
|
|
|
char buf[64];
|
|
sprintf(buf, "/engines/engine[%d]", _nextEngine++);
|
|
EngRec* er = new EngRec();
|
|
er->eng = thruster;
|
|
er->prefix = dup(buf);
|
|
_thrusters.add(er);
|
|
|
|
_currObj = thruster;
|
|
}
|
|
|
|
// Turns a string axis name into an integer for use by the
|
|
// ControlMap. Creates a new axis if this one hasn't been defined
|
|
// yet.
|
|
int FGFDM::parseAxis(const char* name)
|
|
{
|
|
int i;
|
|
for(i=0; i<_axes.size(); i++) {
|
|
AxisRec* a = (AxisRec*)_axes.get(i);
|
|
if(eq(a->name, name))
|
|
return a->handle;
|
|
}
|
|
|
|
// Not there, make a new one.
|
|
AxisRec* a = new AxisRec();
|
|
a->name = dup(name);
|
|
fgGetNode( a->name, true ); // make sure the property name exists
|
|
a->handle = _airplane.getControlMap()->newInput();
|
|
_axes.add(a);
|
|
return a->handle;
|
|
}
|
|
|
|
int FGFDM::parseOutput(const char* name)
|
|
{
|
|
if(eq(name, "THROTTLE")) return ControlMap::THROTTLE;
|
|
if(eq(name, "MIXTURE")) return ControlMap::MIXTURE;
|
|
if(eq(name, "CONDLEVER")) return ControlMap::CONDLEVER;
|
|
if(eq(name, "STARTER")) return ControlMap::STARTER;
|
|
if(eq(name, "MAGNETOS")) return ControlMap::MAGNETOS;
|
|
if(eq(name, "ADVANCE")) return ControlMap::ADVANCE;
|
|
if(eq(name, "REHEAT")) return ControlMap::REHEAT;
|
|
if(eq(name, "BOOST")) return ControlMap::BOOST;
|
|
if(eq(name, "VECTOR")) return ControlMap::VECTOR;
|
|
if(eq(name, "PROP")) return ControlMap::PROP;
|
|
if(eq(name, "BRAKE")) return ControlMap::BRAKE;
|
|
if(eq(name, "STEER")) return ControlMap::STEER;
|
|
if(eq(name, "EXTEND")) return ControlMap::EXTEND;
|
|
if(eq(name, "HEXTEND")) return ControlMap::HEXTEND;
|
|
if(eq(name, "LEXTEND")) return ControlMap::LEXTEND;
|
|
if(eq(name, "INCIDENCE")) return ControlMap::INCIDENCE;
|
|
if(eq(name, "FLAP0")) return ControlMap::FLAP0;
|
|
if(eq(name, "FLAP1")) return ControlMap::FLAP1;
|
|
if(eq(name, "SLAT")) return ControlMap::SLAT;
|
|
if(eq(name, "SPOILER")) return ControlMap::SPOILER;
|
|
if(eq(name, "CASTERING")) return ControlMap::CASTERING;
|
|
if(eq(name, "PROPPITCH")) return ControlMap::PROPPITCH;
|
|
if(eq(name, "PROPFEATHER")) return ControlMap::PROPFEATHER;
|
|
if(eq(name, "COLLECTIVE")) return ControlMap::COLLECTIVE;
|
|
if(eq(name, "CYCLICAIL")) return ControlMap::CYCLICAIL;
|
|
if(eq(name, "CYCLICELE")) return ControlMap::CYCLICELE;
|
|
if(eq(name, "ROTORENGINEON")) return ControlMap::ROTORENGINEON;
|
|
if(eq(name, "REVERSE_THRUST")) return ControlMap::REVERSE_THRUST;
|
|
SG_LOG(SG_FLIGHT,SG_ALERT,"Unrecognized control type '"
|
|
<< name << "' in YASim aircraft description.");
|
|
exit(1);
|
|
|
|
}
|
|
|
|
void FGFDM::parseWeight(XMLAttributes* a)
|
|
{
|
|
WeightRec* wr = new WeightRec();
|
|
|
|
float v[3];
|
|
v[0] = attrf(a, "x");
|
|
v[1] = attrf(a, "y");
|
|
v[2] = attrf(a, "z");
|
|
|
|
wr->prop = dup(a->getValue("mass-prop"));
|
|
wr->size = attrf(a, "size", 0);
|
|
wr->handle = _airplane.addWeight(v, wr->size);
|
|
|
|
_weights.add(wr);
|
|
}
|
|
|
|
bool FGFDM::eq(const char* a, const char* b)
|
|
{
|
|
// Figure it out for yourself. :)
|
|
while(*a && *b && *a == *b) { a++; b++; }
|
|
return !(*a || *b);
|
|
}
|
|
|
|
char* FGFDM::dup(const char* s)
|
|
{
|
|
int len=0;
|
|
while(s[len++]);
|
|
char* s2 = new char[len+1];
|
|
char* p = s2;
|
|
while((*p++ = *s++));
|
|
s2[len] = 0;
|
|
return s2;
|
|
}
|
|
|
|
int FGFDM::attri(XMLAttributes* atts, char* attr)
|
|
{
|
|
if(!atts->hasAttribute(attr)) {
|
|
SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
|
|
"' in YASim aircraft description");
|
|
exit(1);
|
|
}
|
|
return attri(atts, attr, 0);
|
|
}
|
|
|
|
int FGFDM::attri(XMLAttributes* atts, char* attr, int def)
|
|
{
|
|
const char* val = atts->getValue(attr);
|
|
if(val == 0) return def;
|
|
else return atol(val);
|
|
}
|
|
|
|
float FGFDM::attrf(XMLAttributes* atts, char* attr)
|
|
{
|
|
if(!atts->hasAttribute(attr)) {
|
|
SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr <<
|
|
"' in YASim aircraft description");
|
|
exit(1);
|
|
}
|
|
return attrf(atts, attr, 0);
|
|
}
|
|
|
|
float FGFDM::attrf(XMLAttributes* atts, char* attr, float def)
|
|
{
|
|
const char* val = atts->getValue(attr);
|
|
if(val == 0) return def;
|
|
else return (float)atof(val);
|
|
}
|
|
|
|
// ACK: the dreaded ambiguous string boolean. Remind me to shoot Maik
|
|
// when I have a chance. :). Unless you have a parser that can check
|
|
// symbol constants (we don't), this kind of coding is just a Bad
|
|
// Idea. This implementation, for example, silently returns a boolean
|
|
// falsehood for values of "1", "yes", "True", and "TRUE". Which is
|
|
// especially annoying preexisting boolean attributes in the same
|
|
// parser want to see "1" and will choke on a "true"...
|
|
//
|
|
// Unfortunately, this usage creeped into existing configuration files
|
|
// while I wasn't active, and it's going to be hard to remove. Issue
|
|
// a warning to nag people into changing their ways for now...
|
|
bool FGFDM::attrb(XMLAttributes* atts, char* attr)
|
|
{
|
|
const char* val = atts->getValue(attr);
|
|
if(val == 0) return false;
|
|
|
|
if(eq(val,"true")) {
|
|
SG_LOG(SG_FLIGHT, SG_ALERT, "Warning: " <<
|
|
"deprecated 'true' boolean in YASim configuration file. " <<
|
|
"Use numeric booleans (attribute=\"1\") instead");
|
|
return true;
|
|
}
|
|
return attri(atts, attr, 0) ? true : false;
|
|
}
|
|
|
|
}; // namespace yasim
|