1
0
Fork 0
flightgear/src/FDM/JSBSim/FGJSBBase.cpp
2011-10-30 13:30:57 +01:00

349 lines
11 KiB
C++

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Module: FGJSBBase.cpp
Author: Jon S. Berndt
Date started: 07/01/01
Purpose: Encapsulates the JSBBase object
------------- Copyright (C) 2001 Jon S. Berndt (jon@jsbsim.org) -------------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
Further information about the GNU Lesser General Public License can also be found on
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
HISTORY
--------------------------------------------------------------------------------
07/01/01 JSB Created
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#define BASE
#include "FGJSBBase.h"
#include <iostream>
#include <sstream>
#include <cstdlib>
namespace JSBSim {
static const char *IdSrc = "$Id: FGJSBBase.cpp,v 1.32 2011/10/22 14:38:30 bcoconni Exp $";
static const char *IdHdr = ID_JSBBASE;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#ifndef _MSC_VER
char FGJSBBase::highint[5] = {27, '[', '1', 'm', '\0' };
char FGJSBBase::halfint[5] = {27, '[', '2', 'm', '\0' };
char FGJSBBase::normint[6] = {27, '[', '2', '2', 'm', '\0' };
char FGJSBBase::reset[5] = {27, '[', '0', 'm', '\0' };
char FGJSBBase::underon[5] = {27, '[', '4', 'm', '\0' };
char FGJSBBase::underoff[6] = {27, '[', '2', '4', 'm', '\0' };
char FGJSBBase::fgblue[6] = {27, '[', '3', '4', 'm', '\0' };
char FGJSBBase::fgcyan[6] = {27, '[', '3', '6', 'm', '\0' };
char FGJSBBase::fgred[6] = {27, '[', '3', '1', 'm', '\0' };
char FGJSBBase::fggreen[6] = {27, '[', '3', '2', 'm', '\0' };
char FGJSBBase::fgdef[6] = {27, '[', '3', '9', 'm', '\0' };
#else
char FGJSBBase::highint[5] = {'\0' };
char FGJSBBase::halfint[5] = {'\0' };
char FGJSBBase::normint[6] = {'\0' };
char FGJSBBase::reset[5] = {'\0' };
char FGJSBBase::underon[5] = {'\0' };
char FGJSBBase::underoff[6] = {'\0' };
char FGJSBBase::fgblue[6] = {'\0' };
char FGJSBBase::fgcyan[6] = {'\0' };
char FGJSBBase::fgred[6] = {'\0' };
char FGJSBBase::fggreen[6] = {'\0' };
char FGJSBBase::fgdef[6] = {'\0' };
#endif
const double FGJSBBase::radtodeg = 57.295779513082320876798154814105;
const double FGJSBBase::degtorad = 0.017453292519943295769236907684886;
const double FGJSBBase::hptoftlbssec = 550.0;
const double FGJSBBase::psftoinhg = 0.014138;
const double FGJSBBase::psftopa = 47.88;
const double FGJSBBase::fpstokts = 0.592484;
const double FGJSBBase::ktstofps = 1.68781;
const double FGJSBBase::inchtoft = 0.08333333;
const double FGJSBBase::in3tom3 = 1.638706E-5;
const double FGJSBBase::m3toft3 = 1.0/(fttom*fttom*fttom);
const double FGJSBBase::inhgtopa = 3386.38;
const double FGJSBBase::fttom = 0.3048;
double FGJSBBase::Reng = 1716.56; // Gas constant for Air (ft-lb/slug-R)
double FGJSBBase::Rstar = 1545.348; // Universal gas constant
double FGJSBBase::Mair = 28.9645; //
const double FGJSBBase::SHRatio = 1.40;
// Note that definition of lbtoslug by the inverse of slugtolb and not
// to a different constant you can also get from some tables will make
// lbtoslug*slugtolb == 1 up to the magnitude of roundoff. So converting from
// slug to lb and back will yield to the original value you started with up
// to the magnitude of roundoff.
// Taken from units gnu commandline tool
const double FGJSBBase::slugtolb = 32.174049;
const double FGJSBBase::lbtoslug = 1.0/slugtolb;
const double FGJSBBase::kgtolb = 2.20462;
const double FGJSBBase::kgtoslug = 0.06852168;
const string FGJSBBase::needed_cfg_version = "2.0";
const string FGJSBBase::JSBSim_version = "1.0 "__DATE__" "__TIME__;
std::queue <FGJSBBase::Message> FGJSBBase::Messages;
FGJSBBase::Message FGJSBBase::localMsg;
unsigned int FGJSBBase::messageId = 0;
short FGJSBBase::debug_lvl = 1;
using std::cerr;
using std::cout;
using std::endl;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::PutMessage(const Message& msg)
{
Messages.push(msg);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::PutMessage(const string& text)
{
Message msg;
msg.text = text;
msg.messageId = messageId++;
msg.subsystem = "FDM";
msg.type = Message::eText;
Messages.push(msg);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::PutMessage(const string& text, bool bVal)
{
Message msg;
msg.text = text;
msg.messageId = messageId++;
msg.subsystem = "FDM";
msg.type = Message::eBool;
msg.bVal = bVal;
Messages.push(msg);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::PutMessage(const string& text, int iVal)
{
Message msg;
msg.text = text;
msg.messageId = messageId++;
msg.subsystem = "FDM";
msg.type = Message::eInteger;
msg.bVal = (iVal != 0);
Messages.push(msg);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::PutMessage(const string& text, double dVal)
{
Message msg;
msg.text = text;
msg.messageId = messageId++;
msg.subsystem = "FDM";
msg.type = Message::eDouble;
msg.bVal = (dVal != 0.0);
Messages.push(msg);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int FGJSBBase::SomeMessages(void)
{
return !Messages.empty();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::ProcessMessage(void)
{
if (Messages.empty()) return;
localMsg = Messages.front();
while (Messages.size() > 0) {
switch (localMsg.type) {
case JSBSim::FGJSBBase::Message::eText:
cout << localMsg.messageId << ": " << localMsg.text << endl;
break;
case JSBSim::FGJSBBase::Message::eBool:
cout << localMsg.messageId << ": " << localMsg.text << " " << localMsg.bVal << endl;
break;
case JSBSim::FGJSBBase::Message::eInteger:
cout << localMsg.messageId << ": " << localMsg.text << " " << localMsg.iVal << endl;
break;
case JSBSim::FGJSBBase::Message::eDouble:
cout << localMsg.messageId << ": " << localMsg.text << " " << localMsg.dVal << endl;
break;
default:
cerr << "Unrecognized message type." << endl;
break;
}
Messages.pop();
if (Messages.size() > 0) localMsg = Messages.front();
else break;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGJSBBase::Message* FGJSBBase::ProcessNextMessage(void)
{
if (Messages.empty()) return NULL;
localMsg = Messages.front();
Messages.pop();
return &localMsg;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGJSBBase::disableHighLighting(void)
{
highint[0]='\0';
halfint[0]='\0';
normint[0]='\0';
reset[0]='\0';
underon[0]='\0';
underoff[0]='\0';
fgblue[0]='\0';
fgcyan[0]='\0';
fgred[0]='\0';
fggreen[0]='\0';
fgdef[0]='\0';
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
string FGJSBBase::CreateIndexedPropertyName(const string& Property, int index)
{
std::ostringstream buf;
buf << Property << '[' << index << ']';
return buf.str();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
double FGJSBBase::GaussianRandomNumber(void)
{
static double V1, V2, S;
static int phase = 0;
double X;
if (phase == 0) {
V1 = V2 = S = X = 0.0;
do {
double U1 = (double)rand() / RAND_MAX;
double U2 = (double)rand() / RAND_MAX;
V1 = 2 * U1 - 1;
V2 = 2 * U2 - 1;
S = V1 * V1 + V2 * V2;
} while(S >= 1 || S == 0);
X = V1 * sqrt(-2 * log(S) / S);
} else
X = V2 * sqrt(-2 * log(S) / S);
phase = 1 - phase;
return X;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
double FGJSBBase::VcalibratedFromMach(double mach, double p, double psl, double rhosl)
{
double pt,A;
if (mach < 0) mach=0;
if (mach < 1) //calculate total pressure assuming isentropic flow
pt=p*pow((1 + 0.2*mach*mach),3.5);
else {
// shock in front of pitot tube, we'll assume its normal and use
// the Rayleigh Pitot Tube Formula, i.e. the ratio of total
// pressure behind the shock to the static pressure in front of
// the normal shock assumption should not be a bad one -- most supersonic
// aircraft place the pitot probe out front so that it is the forward
// most point on the aircraft. The real shock would, of course, take
// on something like the shape of a rounded-off cone but, here again,
// the assumption should be good since the opening of the pitot probe
// is very small and, therefore, the effects of the shock curvature
// should be small as well. AFAIK, this approach is fairly well accepted
// within the aerospace community
// The denominator below is zero for Mach ~ 0.38, for which
// we'll never be here, so we're safe
pt = p*166.92158*pow(mach,7.0)/pow(7*mach*mach-1,2.5);
}
A = pow(((pt-p)/psl+1),0.28571);
return sqrt(7*psl/rhosl*(A-1));
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
double FGJSBBase::MachFromVcalibrated(double vcas, double p, double psl, double rhosl)
{
double pt = p + psl*(pow(1+vcas*vcas*rhosl/(7.0*psl),3.5)-1);
if (pt/p < 1.89293)
return sqrt(5.0*(pow(pt/p, 0.2857143) -1)); // Mach < 1
else {
// Mach >= 1
double mach = sqrt(0.77666*pt/p); // Initial guess is based on a quadratic approximation of the Rayleigh formula
double delta = 1.;
double target = pt/(166.92158*p);
int iter = 0;
// Find the root with Newton-Raphson. Since the differential is never zero,
// the function is monotonic and has only one root with a multiplicity of one.
// Convergence is certain.
while (delta > 1E-5 && iter < 10) {
double m2 = mach*mach; // Mach^2
double m6 = m2*m2*m2; // Mach^6
delta = mach*m6/pow(7.0*m2-1.0,2.5) - target;
double diff = 7.0*m6*(2.0*m2-1)/pow(7.0*m2-1.0,3.5); // Never zero when Mach >= 1
mach -= delta/diff;
iter++;
}
return mach;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
} // namespace JSBSim